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1 Introduction

In this paper, we investigate bottom-up risk aggregation applied by insurance companies

facing reserve risk from multiple lines of business. In the bottom-up approach, an insurance

company first determines risk capitals for each line of business and next aggregates the

risk capitals by applying the variance-covariance formula in order to determine a diversified

risk capital at the level of a company. Such an approach to establish a diversified risk

capital for an insurance company is specified in Solvency II Standard Formula and is often

used in actuarial practice. Clearly, correlations play an important role in bottom-up risk

aggregation. Depending on the regulatory or reporting regime, the required risk capitals

should be calculated in different time horizons and calendar years. In Solvency II regulatory

regime, insurance companies calculate solvency capital requirements and risk margins (risk

capitals for future calendar years in one-year time horizons). In IFRS 17 reporting standard,

insurance companies calculate risk adjustments (risk capitals in ultimate time horizon). The

goal of this paper is to study correlation coefficients of ultimate losses and correlations of

one-year losses in future calendar years in lines of business which one should use in ultimate

horizon and in future calendar years in one-year horizon when applies a bottom-up risk

aggregation formula. Questions about correlations in different time horizons and calendar

years have recently gained more attention among actuaries, as insurance companies now

have to quantify, at the same time, their risks in one-year and ultimate time horizons under

Solvency II and IFRS 17.

In the actuarial literature, one can find many flexible multivariate claims development

models based on Gaussian (lognormal) distributions, Tweedie GLMs, common shocks and

copulas, see among others Braun (2004), Shi and Frees (2011), Avanzi et al. (2018), Avanzi

et al. (2018), Iturria et al. (2021). In this paper, we consider a multivariate version of

Hertig’s lognormal model from Merz et al. (2012) and Chapter 5 in Wüthrich (2015). We

focus on three types of dependence between claims developments in loss triangles, which

include cell-wise, calendar year and AR(1) trend correlation between and within loss triangles.

We define ultimate correlation and one-year correlations in future calendar years between

lines of business. By their definitions, these correlations serve as the inputs to the bottom-

up risk aggregation formula which should be applied to determine a diversified risk capital

from stand-alone risk capitals in ultimate and one-year time horizons. We derive analytical

formulas for the ultimate correlation and the one-year correlations in future calendar years

in our multivariate Hertig’s lognormal model. The formulas allow us to study the values of

the correlation coefficients for bottom-up risk aggregation in different time horizons and in
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different calendar years. They also allow us to switch (calibrate) the one-year correlation

from the ultimate correlation, and vice verse. For special cases of our claims development

model, we derive explicit (and simpler) formulas for the ultimate correlation and the one-year

correlations in future calendar years. We investigate analytically properties of the ultimate

and the one-year correlations. Finally, we consider eleven lines of business under the Solvency

II regulation from the Polish market and study numerically properties of the ultimate and the

one-year correlations, their possible values observed in practice and the impact of misspecified

correlations on diversified risk capital.

Compared to Merz et al. (2012) and Wüthrich (2015), the main contributions of this

paper are the following:

� we derive new formulas for the ultimate and the one-year correlations, and prove their

new properties,

� we derive new relations between the ultimate and the one-year correlations,

� we discuss in detail the role of information when we define predictions, mean squared

errors of predictions and, finally, correlations for losses for multiple lines of business,

� we present an extensive numerical study of the ultimate and the one-year correlations

and their impact on capital based on real data.

Our first conclusion is that the correlation coefficients which should be used for bottom-up

risk aggregation depend on the time horizon and the calendar year of the risk measurement

period (at least in the Hertig’s model). The three most important correlation coefficients

which should be used for deriving the Solvency II capital requirement, the Solvency II risk

margin and the IFRS 17 risk adjustment are different. Our second conclusion is that we

identify practically relevant cases when the ultimate correlation is smaller than the one-

year correlation in the next calendar year. In these cases, if an insurance company uses

one-year correlations from Solvency II for ultimate risk aggregation in IFRS 17, it tends to

over-estimate the diversified risk capital in the considered model (the risk adjustment at the

level of a company). At the same time, our numerical study with real data shows that the

ultimate correlation can be larger than the one-year correlation in the next calendar year.

Our third conclusion is that even though we observe (in some cases substantial) differences

in the ultimate and the one-year correlations, the impact of a misused correlation on capital

is rather small and reaches 4% in our numerical study. However, we point out that we can

easily construct a synthetic example where the use of an improper correlation leads to the
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misestimation of capital by 7.5%. The key message from this paper to actuaries is that the

ultimate and the one-year correlations are different and differences in their values should be

investigated as they may have an impact on calculations performed in Solvency II and IFRS

17.

The topic of correlations in claims reserving has already gained attention in the actuarial

literature. We would like to refer to Avanzi et al. (2016) and Taylor (2018) where practical

aspects of defining correlation matrices and possible values of ultimate correlations observed

in practice are discussed. However, the topic concerning the relation between the ultimate

and the one-year correlations is new. The notions of the ultimate correlation and the one-

year correlation have been also recently introduced by El Alami et al. (2022). El Alami et al.

(2022) consider a different actuarial model with additive cash flows from elliptical distribution

with special dependence structures. The authors only investigate the one-year correlation in

the next calendar year, and they do not discuss the one-year correlations in future calendar

years. Interestingly, El Alami et al. (2022) also show that, in their model, the one-year

correlation in the next calendar year is higher than the ultimate correlation, and the IFRS

17 capital can be misestimated by 8% in their semi-synthetic example.

This paper is structured as follows. In section 2, we introduce a multivariate Hertig’s

lognormal model. The key ideas and first conclusions are presented in Section 3. In Section

4, we define the ultimate correlation and the one-year correlations in future calendar years.

The two key relations between the correlations are derived in Section 5. Numerical examples

are presented in Section 6. All proofs can be found in Appendix.

2 The multivariate model of claims development

We study a multivariate version of Hertig’s lognormal model of claims development from

Chapter 5 in Wüthrich (2015) and Merz et al. (2012). In the sections below, we present key

results on the multivariate Hertig’s lognormal model which we need in this paper.

Let us considerN lines of business which are labelled by n = 1, . . . , N . We denote accident

years by i ∈ {1, . . . , I} and development years by j ∈ {0, . . . , J}. As always, we assume that

I ≥ J + 1 and all claims are settled within J + 1 development years. To define cell-wise

correlations between claims development processes in the lines of business, we assume that

all lines of business have the same number of historical accident years and development

years, hence I and J do not depend on n. The cumulative payments from accident year i

after development year j for line of business n are denoted by Ci,j,n.
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In our multivariate Hertig’s lognormal model, we assume that

� The development of claims follows the process:

Ci,j,n = Ci,j−1,ne
ξi,j,n , (i, j, n) ∈

{
1, . . . , I

}
×
{
0, . . . , J

}
×
{
1, . . . , N

}
, (2.1)

and we set w.l.o.g. Ci,−1,n = 1.

We define the vectors:

ξi,j =
(
ξi,j,1, . . . , ξi,j,N

)T ∈ RN , ξi =
(
ξTi,0, . . . , ξ

T
i,J

)T ∈ Ra, ξ =
(
ξT1 , . . . , ξ

T
I

)T ∈ Rd,

where a = N(J + 1) and d = aI, and we assume that

� Conditionally, given Θ ∈ Ra, the random vector ξ has a multivariate Gaussian distribu-

tion with fixed positive-definite covariance matrix Σ ∈ Rd×d and conditional expected

values E
[
ξi|Θ

]
= Θ for all i ∈ {1, . . . , I},

� The parameter Θ has a multivariate Gaussian distribution with prior mean µ ∈ Ra

and positive-definite prior covariance matrix T ∈ Ra×a.

We are interested in the following dependence structures between the claims run-offs:

� Dependence A: Cell-wise correlation:

Cov
[
ξi,j,n, ξl,z,m|Θ

]
=


σj,nσz,mρ, (i, j) = (l, z), (i, j, n) ̸= (l, z,m),

σ2
i,n, (i, j, n) = (l, z,m),

0, otherwise.

� Dependence B: Cell-wise and calendar year correlation:

Cov
[
ξi,j,n, ξl,z,m|Θ

]
=


σj,nσz,mρ, i+ j = l + z, (i, j, n) ̸= (l, z,m),

σ2
i,n, (i, j, n) = (l, z,m),

0, otherwise

� Dependence C: Cell-wise, calendar year and trend AR(1) correlation:

Cov
[
ξi,j,n, ξl,z,m|Θ

]
=


σj,nσz,mρ

h, i+ j − l − z = h− 1, (i, j, n) ̸= (l, z,m), h = 1, 2, . . . ,

σ2
i,n, (i, j, n) = (l, z,m),

0, otherwise
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In dependence structure A we assume that there is only a cell-wise correlation between the

claims development noises ξ in the loss triangles of lines of business. In dependence structure

B we additionally assume that there is a correlation between the claims development noises ξ

arising in the same calendar year within and between the loss triangles. Finally, in dependence

structure C we assume, in addition to A and B, that there is a correlation between the claims

development noises ξ in all calendar years, within and between the loss triangles, yet the

correlation decreases for more distant calendar years. For details on the three dependence

structures, we refer to Chapter 5.2.5 in Wüthrich (2015). The dependence structures A,

B and C are controlled with one correlation parameters ρ. We can also allow for different

correlation coefficients between and within loss triangles, as well as for different cell-wise and

calendar year correlation coefficients. We do not need these extensions in the paper.

As far as the parameters’ uncertainty is concerned, we focus on the following cases:

� Parameters’ uncertainty: The uncertainties of the a priori parameters’ estimates for

the lines of business and the development years are independent from each other, and

we set:

T = τ 2(µ2)T1a×a, (2.2)

where τ > 0, µ2 denotes a vector with squared elements of µ, and 1a×a denotes an

identity matrix of dimension a × a. The parameter τ plays the role of a coefficient of

variation,

� No parameters’ uncertainty: we set τ = 0 in (2.2).

Again, the choice of T is motivated in Chapter 5.2.5 in Wüthrich (2015). In Bayesian

setting, the diagonal structure of T implies that we make independent decisions about the

parameters’ estimates based on their a priori knowledge. We remark that we only consider

the parameters’ uncertainty related to the expected value of ξ. If we would like to measure

uncertainty related to the specification of the covariance matrix of ξ, then a full simulation

model has to be run in the spirit of Shi et al. (2012).

Let t = 1, 2, . . . denote a calendar year. We introduce Dt =
{
(i, j, n) ∈

{
1, . . . , I

}
×{

0, . . . , J
}
×
{
1, . . . , N

}
, i+ j ≤ t

}
. The set Dt contains indices of the cumulative payments

Ci,j,n, equivalently, the indices of the claims development noises ξi,j,n, which have been ob-

served at the end of calendar year t for all lines of business n = 1, ..., N . We also introduce

the filtration:

Ft = σ
{
Ci,j,n : (i, j, n) ∈ Dt

}
,

6



which describes the information available after t calendar years from all lines of business

n = 1, ..., N .

Next, we define matrices PDt : Rd 7→ R|Dt| and PDc
t
: Rd 7→ R|Dc

t | such that

ξ 7→ ξDt = PDtξ, ξ 7→ ξD
c
t = PDc

t
ξ. (2.3)

The vector ξ contains the Gaussian noises describing the whole claims development process for

all lines of business. The vector ξDt contains the Gaussian noises from the claims development

process which have been observed at the end of the calendar year t, and the vector ξD
c
t contains

the Gaussian noises from the claims development process which will be observed after the

calendar year t.

The goal in claims reserving is to derive the conditional distribution of ξD
c
t given ξDt . This

distribution can be derived with Theorems A.1-A.2, see Corollary 5.3 in Wüthrich (2015) and

Theorem 3.4 in Merz et al. (2012).

Theorem 2.1. The conditional distribution of ξD
c
t given ξDt is multivariate Gaussian with

the conditional mean

µpost
Dc

t
= E

[
ξD

c
t
∣∣ξDt

]
= PDc

t
Aµ+QDt,Dc

t

(
ξDt − PDtAµ

)
,

and conditional covariance matrix

Spost
Dc

t
= cov

[
ξD

c
t
∣∣ξDt

]
= PDc

t
SPT

Dc
t
−QDt,Dc

t
PDtSPT

Dc
t

where

A = (1a×a, . . . ,1a×a)
T ∈ Rd×a,

QDt,Dc
t

= PDc
t
SPT

Dt

(
PDtSPT

Dt

)−1

,

S = cov
[
ξ
]
= Σ +ATAT .

Let us recall that 1a×a ∈ Ra×a denotes an identity matrix of dimension a× a.

Corollary 2.1. Under Dependence A and B and without parameters’ uncertainty (τ = 0),

ξD
c
t is independent of ξDt.

Under the assumptions of Corollary 2.1, we will derive explicit results for ultimate and one-

year correlations. As we will illustrate in Section 3.3, the two cases highlighted in Corollary

2.1 are very special cases of the general claims reserving problem we investigate.
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In the sequel, we will select elements of the vector ξD
c
t . Let us define a vector et|i,j∈J ,n of

dimension |Dc
t | × 1, which contains zeros and ones, such that

eT
t|i,j∈J ,nξ

Dc
t =

J∑
j=t−i+1

ξi,j,n1{j ∈ J }.

We will use the notation:

eT
t|i,j,nξ

Dc
t = ξi,j,n1{t− i+ 1 ≤ j ≤ J}, eT

t|i,j≤M,nξ
Dc

t =
M∑

j=t−i+1

ξi,j,n1{t− i+ 1 ≤ M},

where the indicators guarantee that we choose indices j ∈ J such that j ∈ [t − i + 1,M ],

otherwise et|i,j∈J ,n only contains zeros.

3 The first outlook

Before we present the general results, we focus on special (simple) cases in order to better un-

derstand one-year and ultimate correlations, misestimation of capital resulting from misused

(misestimated) correlation and the technique we use to derive the results.

3.1 Ultimate and one-year correlations

We consider two lines of business (n = 1, 2) with one accident year (I = 1). We study

Dependence A without parameters’ uncertainty. We investigate the claims development

processes after the first calendar year (we set t = 1 and the filtration F1 is known to the

actuary). From (2.1), we define the ultimate payment

CJ,n = C0e
∑J

j=1 ξj,n .

We define the valuation of the ultimate payment after the first calendar year

Ĉ1
J,n = E[CJ,n|F1] = C0,ne

∑J
j=1

(
µj,n+

1
2
σ2
j,n

)
, (3.1)

as well as the sequence of valuations of the ultimate payment in the future calendar years,

after 1 + k calendar years,

Ĉ1+k
J,n = E[CJ,n|F1+k] = C0,ne

∑k
j=1 ξj,ne

∑J
j=k+1

(
µj,n+

1
2
σ2
j,n

)
, k = 0, ..., J. (3.2)

Clearly, Ĉ1+J
J,n = CJ,n. The valuations (3.1)-(3.2) are used to define the ultimate loss and the

one-year loss in calendar year 2 + k

LUlt
n = CJ,n − Ĉ1

J,n, L1Y R,2+k
n = Ĉ2+k

J,n − Ĉ1+k
J,n , k = 0, ..., J − 1.
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For the definition of the ultimate loss and the one-year loss in actuarial claims reserving, we

refer e.g. to Chapter 1 in Wüthrich (2015) and Wüthrich and Merz (2015).

By direct calculations for lognormal distributions, we can derive the Pearson correlation

coefficient between the ultimate losses in the two lines of business (ultimate correlation)

ρUlt := corr
[
LUlt
1 , LUlt

2 |F1

]
=

cov
[
Ĉ1+J

J,1 , Ĉ1+J
J,2 |F1

]
√

V ar
[
Ĉ1+J

J,1 |F1

]√
V ar

[
Ĉ1+J

J,2 |F1

]
=

Ĉ1
J,1Ĉ

1
J,2e

1
2

∑J
j=1 2σj,1σj,2ρ − Ĉ1

J,1Ĉ
1
J,2

Ĉ1
J,1Ĉ

1
J,2

√
e
∑J

j=1 σ
2
j,1 − 1

√
e
∑J

j=1 σ
2
j,2 − 1

=
e
∑J

j=1 σj,1σj,2ρ − 1√
e
∑J

j=1 σ
2
j,1 − 1

√
e
∑J

j=1 σ
2
j,2 − 1

≈
∑J

j=1 σj,1σj,2√∑J
j=1 σ

2
j,1

√∑J
j=1 σ

2
j,2

ρ, (3.3)

as well as, the Pearson correlation coefficients between the one-year losses in the two lines of

business in calendar year 2 + k (one-year correlations)

ρ1Y R
2+k := corr

[
L1Y R,2+k
1 , L1Y R,2+k

2 |F1

]
=

cov
[
Ĉ2+k

J,1 , Ĉ2+k
J,2 |F1

]
− cov

[
Ĉ1+k

J,1 , Ĉ1+k
J,2 |F1

]
√
V ar

[
Ĉ2+k

J,1 |F1

]
− V ar

[
Ĉ1+k

J,1 |F1

]√
V ar

[
Ĉ2+k

J,2 |F1

]
− V ar

[
Ĉ1+k

J,2 |F1

]
=

e
∑k+1

j=1 σj,1σj,2ρ − e
∑k

j=1 σj,1σj,2ρ√
e
∑k+1

j=1 σ2
j,1 − e

∑k
j=1 σ

2
j,1 ·
√

e
∑k+1

j=1 σ2
j,2 − e

∑k
j=1 σ

2
j,2

≈ σk+1,1σk+1,2

σk+1,1σk+1,2

ρ = ρ, k = 0, ..., J − 1. (3.4)

In the calculations above, we use the property that cov
[
Ĉ2+k

J,n , Ĉ1+k
J,m |F1

]
= cov

[
Ĉ1+k

J,n , Ĉ1+k
J,m |F1

]
for n,m = 1, 2. We have two remarks concerning the correlations derived:

� The approximations in (3.3)-(3.4) hold for small (σj,n)
J
j=1, which is very often the case

in practice (note that σ0,n can still be large, which is often the case in practice);

� Even if ρ = 1, the correlations (3.3)-(3.4) are not necessary equal to 1, which is a

well-known fact for lognormal distributions.

The correlation coefficients (3.3)-(3.4) are the main object of this paper. Ultimate and

one-year correlations are used in practice for different purposes and their role in actuarial

capital modelling will be explained in the sequel. We start with presenting the conclusions
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from this example. The one-year correlations in the future calendar years are not equal,

yet they are almost equal if the volatility parameters are small. The ultimate correlation

is different from the one-year correlations. Let us assume that the volatility parameters

are small, so that the approximations hold. By the Cauchy-Schwarz inequality, we get the

inequality

ρUlt ≤ ρ1Y R = ρ, (3.5)

where the equality is achieved only if σj,1 = ασj,2 for all j = 1, ..., J and for some α > 0,

which is unlikely situation in practice. Hence, from (3.5), we can conclude that the ultimate

correlation is lower than the one-year correlation in our example. Let us try to answer how

small the ultimate correlation can be compared to the one-year correlation. By the Cassels’s

inequality, see eq. (3.2) in Watson (1955), we get the inequality

ρUlt ≥ Cρ1Y R = Cρ, (3.6)

where C = 2
√

L
(1+L)2

≤ 1, and L =
maxj=1,...J σj,2/σj,1

minj=1,...,J σj,2/σj,1
≥ 1. We observe that C = 1 if and only

if L = 1, and L = 1 if and only if σj,1 = ασj,2 for all j = 1, ..., J and for some α > 0, which

is the case discussed above. If C < 1, then the equality in (3.6) is achieved only if J = 2

and σ2,1

σ1,1
= σ1,2

σ2,2
(see eq. (3.2) in Watson (1955)). The case with J = 2 is not interesting in

practice. If we still consider J = 2 and in addition we assume that σ1,n ≥ σ2,n, n = 1, 2, which

is the typical case in practice as volatilities decrease in development periods, then again we

have L = C = 1. Hence, the lower bound in (3.6) is not achieved, but we expect that the

larger L, the smaller ρUlt compared to ρ1Y R.

Let us consider a special case of the volatility parameters. We assume that

σj,n = σ1,ne
−αn(j−1), j = 1, ..., J, α1 > α2. (3.7)

We set J = 15 and σ1,n = 0.1 (the value of σ1,n is reasonable based on the estimations we

perform in Section 5). The approximations (3.3)-(3.4) can be applied. We have L = e15(α1−α2).

We set α1 = 0.5 and we consider α2 ∈ (0, 0.5). The ratio of the ultimate correlation (3.3)

to the one-year correlation (3.4), calculated with the approximations, is presented in Figure

1. As expected, the smaller α2, the larger L, and the larger the difference between ρUlt and

ρ1Y R. In our synthetic example, we observe that ρUlt can be 40% smaller than ρ1Y R.

3.2 The impact of correlations on diversified capital

From Figure 1 we can observe that the difference between the ultimate and the one-year

correlation can reach (in our synthetic example) 40%. From practical point of view, we are
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Figure 1: The ratio of the ultimate correlation (3.3) to the one-year correlation (3.4) under

the volatility parameters specified with (3.7).

interested to what extent a misuse (misestimation) of correlation can impact capital measures.

In this paper we investigate the bottom-up (variance-covariance) risk aggregation formula.

Definition 3.1. Let x > 0 and y > 0 denote stand-alone (marginal) risk capitals for losses

for two lines of business and ρ denote the correlation coefficient between the losses in the lines

of business. The bottom-up risk aggregation formula implies that the diversified risk capital

is calculated with the rule √
x2 + y2 + 2xyρ. (3.8)

The following result is known, both in theory and practice.

Theorem 3.1. Let us consider the bottom-up aggregation of stand-alone risk capitals x > 0

and y > 0. If we increase the correlation coefficient between the losses from ρ to p, then

the maximal relative increase of the diversified risk capital arises for x = y. For x = y, the

relative increase of the diversified risk capital is equal to
√

1+p
1+ρ

− 1.

Theorem 3.1 shows that there are natural limits on the impact of a misuse of correlation on

capital measures, if we apply the bottom-up risk aggregation formula. In Figure 2 we present

the maximal changes in the diversified capital for two lines of business (i.e. for lines of business

with equal stand-alone capitals) when we increase the correlation between the lines from ρ to

p. The change in the diversified capital is not very large, unless the change in the correlation

is very large. E.g. if we consider buckets of correlations [0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1]

and we increase the correlation from the lower bound to the upper bound for each bucket,
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then the diversified capital increases by 7% − 12%. In other words, if we consider lines of

business with equal stand-alone capitals and the true correlation is within a bucket, the

maximal overestimation of capital is 7% − 12% (assuming that the true correlation is the

lower bound and we choose the upper bound). In our synthetic example of Section 3.1, if we

use ρ1Y R = 0.5 instead of the true correlation ρUlt = 0.3 (the ultimate correlation is 40% lower

than the one-year correlation), we overestimate the capital at most by 7.5%, and this value

can only be reach if the lines of business have equal stand-alone capitals. This misestimation

of capital resulting from misused correlation is large, but not very large, especially compared

to the difference in correlation.
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Figure 2: The maximal changes in the diversified capital for two lines of business if we increase

the correlation from ρ to p, the changes are only investigated for ρ ≤ p.

We also investigate the multivariate extension of the risk aggregation formula (3.8) and

Theorem 3.1. In Figure 3 we observe that the impact of misused (misestimated) correlations

on the diversified capital increases if the number of lines of business increases. If we use ρ1Y R =

0.5 instead of the true correlations ρUlt = 0.3 for all 10 lines of business, we overestimate the

diversified capital by 22%, which is now a very large error.

Our synthetic examples should give a clear signal to actuaries that appropriate correlations

should be used for capital measures. In Section 5 we investigate values of one-year and

ultimate correlations which can be observed in practice, as well as misestimations of capitals

resulting from misused correlations.
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Figure 3: The maximal changes in the diversified capital for multiple lines of business if we

increase the correlations from ρ = 0.3 to p = 0.5 for n = 2, ..., 10 lines of business.

3.3 The role of information in prediction of claims

Let us start with a classical Bayesian estimation in a Gaussian model. We consider

(X1, X2)|Θ1 = θ1,Θ2 = θ2 ∼ N

([
θ1

θ2

]
,

[
1 ρ

ρ 1

])
, (Θ1,Θ2) ∼ N

([
µ1

µ2

]
,

[
τ 2 0

0 τ 2

])
.

By Theorems A.1-A.2, we get the distribution

(X1, X2,Θ1) ∼ N



µ1

µ2

µ3

 ,


1 + τ 2 ρ τ 2

ρ 1 + τ 2 0

τ 2 0 τ 2


 ,

from which we immediately get the conditional distributions of Θ1|X1 = x1 and Θ1|X1 =

x1, X2 = x2. We calculate the moments

E[Θ1|X1 = x1] = µ1 +
τ 2

1 + τ 2
(x1 − µ1),

lim
τ→∞

E[Θ1|X1 = x1] = x1,

lim
τ→0

E[Θ1|X1 = x1] = µ1,

and

E[Θ1|X1 = x1, X2 = x2] = µ1 +
[
τ 2 0

]
·

[
1 + τ 2 ρ

ρ 1 + τ 2

]−1

·

[
x1 − µ1

x2 − µ2

]

= µ1 +
τ 2(1 + τ 2)

(1 + τ 2)2 − ρ2
(x1 − µ1)−

τ 2ρ

(1 + τ 2)2 − ρ2
(x2 − µ2),

lim
τ→∞

E[Θ1|X1 = x1, X2 = x2] = x1,

lim
τ→0

E[Θ1|X1 = x1, X2 = x2] = µ1.
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Hence, if τ ∈ (0,∞), then E[Θ1|X1 = x1] ̸= E[Θ1|X1 = x1, X2 = x2]. If (X, Y ), conditional

on (Θ1,Θ2), are correlated, then the Bayesian estimate of θ1 (the marginal expected value of

X1) is different depending on the information we use in the prediction of θ1: X1 or (X1, X2).

In our framework of dependence structures for claims’ run-offs from Section 2, we consider

two very simple dependent loss triangles with cumulative payments with the distributions

(X1,2, X2,1, Y1,2, Y2,1, X2,2, Y2,2)|Θ1 = θ1,Θ2 = θ2,Φ1 = ϕ1,Φ2 = ϕ2

∼ N


[
θ2 θ1 ϕ2 ϕ1 θ2 ϕ2

]T
,


P Q c ...

Q P c ...

c c 12×2 ...

... ... ... ...


 ,

where

P =

[
1 corr(X1,2, X2,1)

corr(X1,2, X2,1) 1

]
=

[
1 corr(Y1,2, Y2,1)

corr(Y1,2, Y2,1) 1

]
,

Q =

[
corr(X1,2, Y1,2) corr(X1,2, Y2,1)

corr(X2,1, Y1,2) corr(X2,1, Y2,1)

]
,

c =
[
corr(X1,2, X2,2) corr(X2,1, X2,2)

]T
=
[
corr(Y1,2, X2,2) corr(Y2,1, X2,2)

]T
,

and (
Θ1,Θ2,Φ1,Φ2

)
∼ N

([
µ1 µ2 η1 η2

]T
, τ 2 · 14×4

)
.

The loss triangles are presented in Figure 4. The matrix P describes calendar year correlations

within the triangles, the matrix Q – cell-wise and calendar year correlations between the

triangles, and the vector c – trend correlations between the triangles. The goal is to predict

X2,2 – the ultimate payment from the first lines of business.

We can predict X2,2 depending on the information from one line of business or two lines

of business. By Theorem A.1, we derive the two estimators

E[X2,2|X1,2X2,1] = E
[
E[X2,2|X1,2X2,1,Θ1,Θ2,Φ1,Φ2]

∣∣X1,2, X2,1

]
= E[Θ2|X1,2, X2,1] + c · P−1 ·

[
X1,2 − E[Θ2|X1,2, X2,1]

X2,1 − E[Θ1|X1,2, X2,1]

]
,
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Figure 4: The loss triangles in the synthetic example.

and

E[X2,2|X1,2, X2,1, Y1,2, Y2,1]

= E
[
E[X2,2|X1,2X2,1, Y1,2, Y2,1,Θ1,Θ2,Φ1,Φ2]

∣∣X1,2, X2,1, Y1,2, Y2,1

]
= E[Θ2|X1,2, X2,1, Y1,2, Y2,1]

+
[
c c

]
·

[
P Q

Q P

]−1

·


X1,2 − E[Θ2|X1,2, X2,1, Y1,2, Y2,1]

X2,1 − E[Θ1|X1,2, X2,1, Y1,2, Y2,1]

Y1,2 − E[Φ2|X1,2, X2,1, Y1,2, Y2,1]

Y2,1 − E[Φ1|X1,2, X2,1, Y1,2, Y2,1]

 .

We assume that Q is a non-zero matrix in order to have a dependence between the loss tri-

angles – the loss triangles are correlated cell-wise and (possibly) calendar year, i.e. (X1,2, X2,1)

and (Y1,2, Y2,1) are correlated. We can deduce that if we allow for a trend correlation in the loss

triangles (the vector c is non-zero), then E[X2,2|X1,2, X2,1] ̸= E[X2,2|X1,2, X2,1, Y1,2, Y2,1]. If

there is no trend correlation (the vector c is zero), then E[X2,2|X1,2, X2,1] ̸= E[X2,2|X1,2, X2,1, Y1,2, Y2,1]

since E[θ2|X1,2, X2,1] ̸= E[θ2|X1,2, X2,1, Y1,2, Y2,1], unless we set τ = 0 (see the conclusion from

the beginning of this Section). The two important cases of dependence structures A and B

with τ = 0 are pointed out in Corollary 2.1 and will be presented separately in the sequel.

Other cases of dependence structures and parameters’ uncertainty are clearly more subtle

and complicated to consider within the multivariate Hertig’s lognormal model. We exclude

the limit τ → ∞ from consideration, as in this case the variance of the Bayesian estimator

diverges.

Our calculations above illustrate that the Bayesian prediction of the ultimate payment

in a single line of business is in general different depending on the information we use in

the prediction. We can expect that not only the prediction of the ultimate payment in a

single line of business, but also the mean square error of this prediction, hence the marginal

evaluation of the reserve risk, are different if we use the information from the single line of

business or from multiple lines of business in our portfolio. This property of the multivariate

Hertig’s lognormal model have been observed in the numerical examples in Chapter 5 in

Wüthrich (2015), but we present above more mathematical insight into this property. For
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Dependencies A, B and C and our form of parameter’s uncertainty, we identify the only two

cases for which the use of the information from a single line of business or from multiple

lines of business leads to the same evaluation of the reserve risk. In the sequel, we introduce

correlations implied by the mean square errors of predictions, and in order to have proper

correlation coefficients, we should use the same information in the evaluation of the reserve

risk for a single line of business and multiple lines of business.

4 Risk measures and correlations for bottom-up risk

aggregation

We measure the reserve risk at the end of calendar year t = I. In the next Sections, we derive

risk measures in ultimate and one-year horizon and define ultimate and one-year correlations

between lines of business.

4.1 Ultimate risk and ultimate correlation

For accident year i such that i + J > t, the ultimate liability (the ultimate cumulative

payments) for the accident year and line of business n is given by

Ci,J,n = Ci,t−i,ne
∑J

j=t−i+1 ξi,j,n = Ci,t−i,ne
eT
t|i,j≤J,n

ξD
c
t
. (4.1)

For other accident years, the claims have been fully developed and these accident years are

no longer investigated in the claims reserving problem. The total ultimate liability for all

accident years and all lines of business is given by

CJ =
J∑

i=t−J+1

N∑
n=1

Ci,J,n.

The best estimate of the ultimate liability at the end of calendar year t is defined with

Ĉt
i,J,n = E

[
Ci,J,n|Ft

]
, i+ J > t.

By Theorems 2.1 and A.3, see Chapter 5.2.3 in Wüthrich (2015) and Theorem 4.1 in Merz

et al. (2012), we can get the formula

Ĉt
i,J,n = Ci,t−i,ne

∑J
j=t−i+1 E

[
ξi,j,n|Ft

]
+ 1

2

∑J
j,l=t−i+1 cov

[
ξi,j,n,ξi,l,n|Ft

]
= Ci,t−i,ne

eT
t|i,j≤J,n

µpost
Dc
t

+ 1
2
eT
t|i,j≤J,n

Spost
Dc
t

et|i,j≤J,n , (4.2)
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for accident years such that i+ J > t.

We investigate the ultimate loss projected from the end of calendar year t. The ultimate

loss for accident year i and line of business n is given by

LUlt,t
i,n = Ci,J,n − Ĉt

i,J,n,

for accident years such that i + J > t. The total ultimate loss for all accident years and all

lines of business is given by

LUlt,t =
N∑

n=1

I∑
i=t−J+1

LUlt,t
i,n .

In claims reserving, the risk of future payments is usually measured with the mean square

error of prediction, which coincides with the variance measure in our model. By Theorems

2.1 and A.3, see Chapter 5.2.3 in Wüthrich (2015) and Theorem 4.3 in Merz et al. (2012),

we have the following result on the ultimate risk of the ultimate loss.

Theorem 4.1. We have the formula for the ultimate risk measure

V ar
[
LUlt,t

∣∣Ft

]
=

N∑
n,m=1

I∑
i,l=t−J+1

cov
[
LUlt,t
i,n , LUlt,t

l,m

∣∣Ft

]
=

N∑
n,m=1

I∑
i,l=t−J+1

cov
[
Ci,J,n, Cl,J,m

∣∣Ft

]
=

N∑
n,m=1

I∑
i,l=t−J+1

Ĉt
i,J,nĈ

t
l,J,m

(
e
∑J

j=t−i+1

∑J
z=t−l+1 cov

[
ξi,j,n,ξl,z,m|Ft

]
− 1
)

=
N∑

n,m=1

I∑
i,l=t−J+1

Ĉt
i,J,nĈ

t
l,J,m

(
e
eT
t|i,j≤J,n

Spost
Dc
t

et|l,j≤J,m − 1
)
. (4.3)

If we measure the ultimate risk for single line of business n, we calculate the above sum

for n = m. As discussed in Section 3.3, we do not modify the matrix Spost
Dc

t
, since for single

line of business n we still calculate V ar
[
LUlt,t
n

∣∣Ft

]
, i.e. we calculate the mean square error of

prediction given the information from multiple lines of business.

We now introduce the notion of the ultimate correlation. The ultimate correlation rep-

resents the correlation which should be used for a bottom-up aggregation of risk capitals

in ultimate time horizon. The implied ultimate correlation is implied by the variance risk

measures from Theorem 4.1.

Definition 4.1. For two lines of business, denoted by n = 1, 2, the implied ultimate correla-

tion is derived from the relation

V ar
[
LUlt,t

∣∣Ft

]
= V ar

[
LUlt,t
1

∣∣Ft

]
+ V ar

[
LUlt,t
2

∣∣Ft

]
+2

√
V ar

[
LUlt,t
1

∣∣Ft

]
V ar

[
LUlt,t
2

∣∣Ft

]
corr

[
LUlt,t
1 , LUlt,t

2

∣∣Ft

]
, (4.4)
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where

LUlt,t
n =

I∑
i=t−J+1

LUlt,t
i,n , n = 1, 2.

The implied ultimate correlation is just the Pearson correlation between the ultimate losses

LUlt,t
1 and LUlt,t

2 conditional on Ft. We denote corr
[
LUlt,t
1 , LUlt,t

2

∣∣Ft

]
by ρUlt

t .

Remark 4.1. We could define the implied ultimate correlation as a coefficient which satisfies

the relation

V ar
[
LUlt,t

∣∣Ft

]
= V ar

[
LUlt,t
1

∣∣F1
t

]
+ V ar

[
LUlt,t
2

∣∣F2
t

]
+2

√
V ar

[
LUlt,t
1

∣∣F1
t

]
V ar

[
LUlt,t
2

∣∣F2
t

]
corr

[
LUlt,t
1 , LUlt,t

2

∣∣Ft

]
, (4.5)

where F1
t and F2

t denote the information available from single lines of business. Such a

coefficient would not be a correlation coefficient and its interpretation could be difficult. In

our numerical experiments from Section 5 we end up with negative values and values above

100% if we use (4.5). We believe that the definition (4.4) is much better for a mathematical

investigation of ultimate and one-year correlations. The role of the information in predic-

tion of claims in the multivariate Hertig’s lognormal model is discussed in Section 3.3. In

particular, among Dependencies A, B and C and our form of parameter’s uncertainty, the

implied correlations defined with (4.4) and (4.5) coincide only for A and B with τ = 0. For

implied ultimate correlation and the role of information in its definition see also a discussion

in Chapter 5.2.6 in Wüthrich (2015).

Formula (4.4) is valid for any dependence structure between lines of business and any

parameters’ uncertainty. We can derive explicit results for the two special cases which we

specify in Corollary 2.1.

Theorem 4.2. Let the ultimate correlation be given with

ρUlt
t =

P√
Q1

√
Q2

.
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� For dependence structure A and no parameters’ uncertainty, we have

P =
I∑

i=t−J+1

Ĉt
i,J,nĈ

t
i,J,m

(
e
∑J

j=t−i+1 σj,nσj,mρ − 1
)

≈
I∑

i=t−J+1

Ĉt
i,J,nĈ

t
i,J,m

J∑
j=t−i+1

σj,nσj,mρ,

Qn =
I∑

i=t−J+1

(
Ĉt

i,J,n

)2(
e
∑J

j=t−i+1 σ
2
j,n − 1

)
≈

I∑
i=t−J+1

(
Ĉt

i,J,n

)2 J∑
j=t−i+1

σ2
j,n, n = 1, 2,

where the approximations hold for small (σj,n)
J
j=1 for n = 1, 2. Moreover, we have the

upper bound on the ultimate correlation ρUlt
t ≤ ρ for small (σj,n)

J
j=1 for n = 1, 2.

� For dependence structure B and no parameters’ uncertainty, we have

P =
I∑

i,l=t−J+1

Ĉt
i,J,nĈ

t
l,J,m

(
e
∑J∧(J+l−i)

j=t−i+1 σj,nσi+j−l,mρ − 1
)

≈
I∑

i,l=t−J+1

Ĉt
i,J,nĈ

t
l,J,m

J∧(J+l−i)∑
j=t−i+1

σj,nσi+j−l,mρ

Qn =
I∑

i=t−J+1

(
Ĉt

i,J,n

)2(
e
∑J∧(J+l−i)

j=t−i+1 σ2
j,n − 1

)
+

I∑
i,l=t−J+1, i ̸=l

Ĉt
i,J,nĈ

t
l,J,n

(
e
∑J∧(J+l−i)

j=t−i+1 σj,nσi+j−l,nρ − 1
)

≈
I∑

i=t−J+1

(
Ĉt

i,J,n

)2 J∑
j=t−i+1

σ2
j,n

+
I∑

i,l=t−J+1, i ̸=l

Ĉt
i,J,nĈ

t
l,J,n

J∧(J+l−i)∑
j=t−i+1

σj,nσi+j−l,nρ, n = 1, 2,

where the approximations hold for small (σj,n)
J
j=1 for n = 1, 2. The ultimate correlation

ρUlt
t can be larger or smaller than ρ.

The above results on ultimate correlations are new. The relations between the ultimate

correlations and the correlation ρ have been observed, without any proof, in the numerical

examples in Chapter 5.2.6 in Wüthrich (2015).

The main purpose of the ultimate correlation is to use it in a bottom-up aggregation of

stand-alone risk capitals in ultimate time horizon. In this approach, an insurance company
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specifies risk capitals in ultimate time horizon for (two) lines of business RCUlt
t,1 and RCUlt

t,2

and applies the variance-covariance aggregation formula to derive the diversified risk capital√(
RCUlt

t,1

)2
+
(
RCUlt

t,2

)2
+ 2 ·RCUlt

t,1 ·RCUlt
t,2 · ρUlt

t , (4.6)

where ρUlt
t denotes the calibrated ultimate correlation. In many practical applications, the

risk capitals in (4.6) are related to variance risk measures of ultimate losses. Traditionally,

actuaries have been measuring risk in ultimate time horizon. Recently, the new IFRS 17

accounting standard also forces insurance companies to calculate risk adjustments which

should be related to a risk measure in ultimate time horizon.

4.2 One-year risks and one-year correlations

We now study a sequence of the best estimates of the ultimate liability at the end of future

calendar years t, t+1, . . ., which are needed to define one-year risks in future calendar years.

Let k = 0, 1, ..., J − 1. We define Ĉt+k
i,J,n = E

[
Ci,J,n|Ft+k

]
for accident years such that

i + J ≥ t + k. We can derive the formula for the best estimate of the ultimate liability at

the end of any calendar year t + k viewed from the end of calendar year t, see the proof

in Appendix and Chapter 5.2.4 in Wüthrich (2015). We point out that we use a different

notation than Wüthrich (2015).

Proposition 4.1. For k = 0, 1, ..., J − 1, we have the formula for the best estimate of the

ultimate liability

Ĉt+k
i,J,n = Ci,t−i,ne

∑J
j=t−i+1 E

[
ξi,j,n|Ft+k

]
·e+

1
2

∑J
j,l=t−i+1 cov

[
ξi,j,n,ξi,l,n|Ft

]
− 1

2

∑J
j,l=t−i+1 cov

[
E[ξi,j,n|Ft+k],E[ξi,l,n|Ft+k]|Ft

]
= Ci,t−i,ne

pT
t|i,k,nξ

Dc
t+rt|i,k,n , i+ J ≥ t+ k, (4.7)

where

pT
t|i,k,n = eT

t|i,j≤t−i+k,n + eT
t+k|i,j≤J,nQDt+k,Dc

t+k
PDt+k

PT
Dc

t
1{i+ J > t+ k},

rt|i,k,n =
(
eT
t|i,j≤J,n − pT

t|i,k,n
)
µpost

Dc
t
+

1

2
eT
t|i,j≤J,nS

post
Dc

t
et|i,j≤J,n −

1

2
pT
t|i,k,nS

post
Dc

t
pt|i,k,n.

Let us investigate the one-year loss in calendar year t + k + 1 projected from the end of

calendar year t+ k. The one-year loss in calendar year t+ k + 1 for accident year i and line

of business n is given by

L1Y R,t+k+1
i,n = Ĉt+k+1

i,J,n − Ĉt+k
i,J,n,
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for accident years such that i+ J > t+ k. The total one-year loss in calendar year t+ k + 1

for all accident years and lines of business is given by

L1Y R,t+k+1 =
N∑

n=1

I∑
i=t+k−J+1

L1Y R,t+k+1
i,n .

The risk of the one-year loss is usually measured, as the risk of the ultimate loss, with

the mean squared error of prediction, which again agrees with the variance measure in our

model. In order to quantify the one-year risk for the next calendar year, we should calculate

the conditional variance

V ar
[
L1Y R,t+k+1

∣∣Ft+k

]
, (4.8)

since the one-year risk in calendar t+ k+ 1 is projected from the end of calendar year t+ k.

Since we measure the risk at the end of calendar year t and we can only project the risk from

the end of calendar year t, we calculate the conditional expected value of (4.8) given Ft:

E
[
V ar

[
L1Y R,t+k+1

∣∣Ft+k

]∣∣Ft

]
,

as a projection of the one-year risk in the future calendar year.

There is an obvious relation between the ultimate loss and the one-year losses in future

calendar years

LUlt,t =
J−1∑
k=0

L1Y R,t+k+1.

From Wüthrich and Merz (2015), we also have the following crucial property for the ultimate

risk and the one-year risks

V ar
[
LUlt,t

∣∣Ft

]
=

J−1∑
k=0

V ar
[
L1Y R,t+k+1

∣∣Ft

]
=

J−1∑
k=0

E
[
V ar

[
L1Y R,t+k+1

∣∣Ft+k

]
Ft

]
, (4.9)

which shows how the ultimate risk can be split into the one-year risks in future calendar

years under variance as the risk measure. In particular, the one-year losses in future calendar

years are not correlated. The decomposition (4.9) does not hold in general, but it holds in

Bayesian claims reserving models, and in our claims reserving model.

We can now derive the one-year risk of the one-year loss in all future calendar years. The

result can be found in Chapter 5.2.4 in Wüthrich (2015) and is also proved in Appendix.
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Theorem 4.3. For k = 0, 1, ..., J − 1, we have the formula for the one-year risk measure in

calendar year t+ k + 1

E
[
V ar

[
L1Y R,t+k+1

∣∣Ft+k

]
Ft

]
= V ar

[
L1Y R,t+k+1

∣∣Ft

]
=

N∑
n,m=1

I∑
i,l=t+k−J+1

cov
[
L1Y R,t+k+1
i,n , L1Y R,t+k+1

l,m

∣∣Ft

]
=

N∑
n,m=1

I∑
i,l=t+k−J+1

cov
[
Ĉt+k+1

i,J,n − Ĉt+k
i,J,n, Ĉ

t+k+1
l,J,m − Ĉt+k

l,J,m

∣∣Ft

]
=

N∑
n,m=1

I∑
i,l=t+k−J+1

(
cov
[
Ĉt+k+1

i,J,n Ĉt+k+1
l,J,m

∣∣Ft

]
− cov

[
Ĉt+k

i,J,nĈ
t+k
l,J,m

∣∣Ft

])
=

N∑
n,m=1

I∑
i,l=t+k−J+1

Ĉt
i,J,nĈ

t
l,J,m

(
e
∑J

j=t−i+1

∑J
z=t−l+1 cov

[
E[ξi,j,n|Ft+k+1],E[ξl,z,n|Ft+k+1]|Ft

]
−e

∑J
j=t−i+1

∑J
z=t−l+1 cov

[
E[ξi,j,n|Ft+k],E[ξl,z,n|Ft+k]|Ft

])
=

N∑
n,m=1

I∑
i,l=t+k−J+1

Ĉt
i,J,nĈ

t
l,J,m

(
e
pT
t|i,k+1,n

Spost
Dc
t

pt|l,k+1,m − e
pT
t|i,k,nS

post
Dc
t

pt|l,k,m
)
. (4.10)

If we want to measure the one-year risk for a single line of business n, we calculate the

above sum with n = m.

We now define the one-year correlations in future calendar years till the liability’s run-off.

The one-year correlations represent the correlations which should be used for a bottom-up

aggregation of risk capitals in one-year time horizon in future calendar years. The implied

one-year correlations are implied by the variance risk measures from Theorem 4.3.

Definition 4.2. For two lines of business, denoted by n = 1, 2, and for k = 0, 1, ..., J − 1,

the implied one-year correlation in calendar year t+ k + 1 is derived from the relation

V ar
[
L1Y R,t+k+1

∣∣Ft

]
= V ar

[
L1Y R,t+k+1
1

∣∣Ft

]
+ V ar

[
L1Y R,t+k+1
2

∣∣Ft

]
+2

√
V ar

[
L1Y R,t+k+1
1

∣∣Ft

]
V ar

[
L1Y R,t+k+1
2

∣∣Ft

]
corr

[
L1Y R,t+k+1
1 , L1Y R,t+k+1

2

∣∣Ft

]
,(4.11)

where

L1Y R,t+k+1
n =

I∑
i=t+k−J+1

L1Y R,t+k+1
i,n , n = 1, 2.

The implied one-year correlation is just the Pearson correlation between the one-year losses

L1Y R,t+k+1
1 and L1Y R,t+k+1

2 conditional on Ft. We denote corr
[
L1Y R,t+k+1
1 , L1Y R,t+k+1

2

∣∣Ft

]
by

ρ1Y R
t+k+1.
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In our two special cases, we can derive explicit results on the one-year correlations. The

theorem below present new results on one-year correlations.

Theorem 4.4. Let the one-year correlations in future calendar years be given with

ρ1Y R
t+k+1 =

P k√
Qk

1

√
Qk

2

, k = 0, 1, ..., J − 1.

� For dependence structure A and no parameter uncertainty, we have

P k =
I∑

i=t+k−J+1

Ĉt
i,J,nĈ

t
i,J,m

(
e
∑t+k−i+1

j=t−i+1 σj,nσj,mρ − e
∑t+k−i

j=t−i+1 σj,nσj,mρ
)
,

≈
I∑

i=t+k−J+1

Ĉt
i,J,nĈ

t
i,J,mσt+k−i+1,nσt+k−i+1,mρ,

Qk
n =

I∑
i=t+k−J+1

(
Ĉt

i,J,n

)2(
e
∑t+k−i+1

j=t−i+1 σ2
j,n − e

∑t+k−i
j=t−i+1 σ

2
j,n

)
≈

I∑
i=t+k−J+1

(
Ĉt

i,J,n

)2
σ2
t+k−i+1,n,

where the approximations hold for small (σj,n)
J
j=1 for n = 1, 2. Moreover, we have the

upper bound on the one-year correlations ρ1Y R
t+k+1 ≤ ρ and ρ1Y R

t+J = ρ for small (σj,n)
J
j=1

for n = 1, 2.

� For dependence structure B and no parameter uncertainty, we have

P k =
I∑

i,l=t+k−J+1

Ĉt
i,J,nĈ

t
l,J,m

(
e
∑(t+k−i+1)∧(J+l−i)

j=t−i+1 σj,nσi+j−l,mρ − e
∑(t+k−i)∧(J+l−i)

j=t−i+1 σj,nσi+j−l,mρ
)

≈
I∑

i,l=t+k−J+1

Ĉt
i,J,nĈ

t
l,J,mσt+k−i+1,nσt+k+1−l,mρ,

Qk
n =

I∑
i=t+k−J+1

(
Ĉt

i,J,n

)2(
e
∑t+k−i+1

j=t−i+1 σ2
j,n − e

∑t+k−i
j=t−i+1 σ

2
j,n

)
+

I∑
i,l=t+k−J+1, i ̸=l

Ĉt
i,J,nĈ

t
l,J,n

(
e
∑(t+k−i+1)∧(J+l−i)

j=t−i+1 σj,nσi+j−l,nρ − e
∑(t+k−i)∧(J+l−i)

j=t−i+1 σj,nσi+j−l,nρ
)

≈
I∑

i=t+k−J+1

(
Ĉt

i,J,n

)2
σ2
t+k−i+1,n +

I∑
i,l=t+k−J+1, i ̸=l

Ĉt
i,J,nĈ

t
l,J,nσt+k−i+1,nσt+k+1−l,nρ,

where the approximations hold for small (σj,n)
J
j=1 for n = 1, 2. Moreover, we have the

lower bound on the one-year correlations ρ1Y R
t+k+1 ≥ ρ and ρ1Y R

t+J = ρ for small (σj,n)
J
j=1

for n = 1, 2.
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The one-year correlation in the next calendar year (for k = 0) is mainly used by insurance

companies in a bottom-up risk aggregation in Solvency II to derive the regulatory capital.

In practice, an insurance company specifies solvency capital requirements in one-year time

horizon for the next calendar year for (two) lines of business SCR1Y R
t+1,1 and SCR1Y R

t+1,2 and

applies the variance-covariance aggregation formula to derive the diversified solvency capital

requirement:√(
SCR1Y R

t+1,1

)2
+
(
SCR1Y R

t+1,2

)2
+ 2 · SCR1Y R

t+1,1 · SCR1Y R
t+1,2 · ρ1Y R

t+1 , (4.12)

where ρ1Y R
t+1 denotes the calibrated one-year correlation in the next calendar year. The sol-

vency capital requirements in (4.12) are often related to variance risk measures of one-year

losses. The key question is to what extent the ultimate correlation ρUlt
t used in (4.6) can

differ from the one-year correlation ρ1Y R
t+1 used in (4.12), and consequently what sizes of mis-

estimation of capitals can we observe if we use an improper correlation for the given time

horizon. We investigate this question in the next two sections.

The one-year correlations in future calendar years (for all k ≥ 0) are important when we

calculate risk margins in Solvency II. The risk margin is calculated as

∞∑
k=0

CoC
SCR1Y R

t+k+1(
1 + rt+k+1

)k+1
, (4.13)

where CoC is a cost of capital, rt+k+1 is the risk-free rate in calendar year t + k + 1 and

SCR1Y R
t+k+1 is the projected solvency capital requirement for calendar year t + k + 1. The

solvency capital requirements can be determined with

SCR1Y R
t+k+1 = 3 · E

[√
V ar

[
L1Y R,t+k+1

∣∣Ft+k

]∣∣Ft

]
≈ 3 ·

√
E
[
V ar

[
L1Y R,t+k+1

∣∣Ft+k

]∣∣Ft

]
= 3 ·

√
V ar

[
L1Y R,t+k+1

∣∣Ft

]
, (4.14)

where the approximation is suggested by Wüthrich and Merz (2015) and the factor of 3 is

assumed in Solvency II Standard Formula. In practice, many insurance companies project

solvency capital requirements for future calendar years for each line of business and aggregate

them with the variance-covariance aggregation formula to derive the diversified risk margin

for a company with (4.13)-(4.14). In this approach, one should use the one-year correlations

in future calendar years for the aggregation of the SCRs projected for the future calendar

years, which are likely to be different from the one-year correlation in the next calendar

year. In the next two sections, we investigate patterns of the one-year correlations ρ1Y R
t+k+1

in future calendar years, for k = 0, 1, . . ., inspect differences in the one-year correlations in
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future calendar years and misestimation of capitals resulting from the choice of improper

correlations.

4.3 Two key relations between the ultimate correlation and the

one-year correlations

In this section, we derive two new relations between the ultimate correlation and the one-year

correlations. In the next section, we investigate correlations and their impact on capitals in

a numerical study with real data.

From (4.9), (4.4), (4.11), we can derive the equality

V ar
[
LUlt,t
1

∣∣Ft

]
+ V ar

[
LUlt,t
2

∣∣Ft

]
+ 2

√
V ar

[
LUlt,t
1

∣∣Ft

]
V ar

[
LUlt,t
2

∣∣Ft

]
corr

[
LUlt,t
1 , LUlt,t

2

∣∣Ft

]
= V ar

[
LUlt,t

∣∣Ft

]
=

J−1∑
k=0

V ar
[
L1Y R,t+k+1

∣∣Ft

]
=

J−1∑
k=0

(
V ar

[
L1Y R,t+k+1
1

∣∣Ft

]
+ V ar

[
L1Y R,t+k+1
2

∣∣Ft

]
+2

√
V ar

[
L1Y R,t+k+1
1

∣∣Ft

]
V ar

[
L1Y R,t+k+1
2

∣∣Ft

]
corr

[
L1Y R,t+k+1
1 , L1Y R,t+k+1

2

∣∣Ft

])
.

Since (4.9) also holds for LUlt,t
1 and LUlt,t

2 , we end up with the following relation between the

risk measures√
V ar

[
LUlt,t
1

∣∣Ft

]
V ar

[
LUlt,t
2

∣∣Ft

]
corr

[
LUlt,t
1 , LUlt,t

2

∣∣Ft

]
=

J−1∑
k=0

√
V ar

[
L1Y R,t+k+1
1

∣∣Ft

]
V ar

[
L1Y R,t+k+1
2

∣∣Ft

]
corr

[
L1Y R,t+k+1
1 , L1Y R,t+k+1

2

∣∣Ft

]
,(4.15)

which allows us to state our first key relation between the correlations.

Theorem 4.5. We set t = I. For n = 1, 2, let (Rt+k
n )J−1

k=0 denote a risk run-off pattern for

line of business n measured with

Rt+k+1
n =

√
V ar

[
L1Y R,t+k+1
n

∣∣Ft

]
√

V ar
[
LUlt,t
n

∣∣Ft

] ∈ (0, 1).

� We have the following relation between the ultimate correlation and the one-year cor-

relations

ρUlt
t =

J−1∑
k=0

Rt+k+1
1 Rt+k+1

2 ρ1Y R
t+k+1, (4.16)
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together with the lower and the upper estimate on the ultimate correlation in terms of

the one-year correlations and the risk run-off patterns

C · min
k=0,...,J−1

{
ρ1Y R
t+k+1

}
≤ ρUlt

t ≤ max
k=0,...,J−1

{
ρ1Y R
t+k+1

}
, (4.17)

with

C = 2

√
L

1 + L2
≤ 1, L =

maxk=0,...,J−1R
t+k+1
1 /Rt+k+1

2

mink=0,...,J−1R
t+k+1
1 /Rt+k+1

2

≥ 1.

� If Rt+k+1
1 ̸= αRt+k+1

2 for some k = 0, 1..., J − 1 and all constants α > 0, then the

ultimate and the one-year correlations in future calendar years cannot be all equal.

Remark 4.2. The assumption that Rt+k+1
1 = αRt+k+1

2 for all k = 0, ..., J − 1 and some

α > 0 is unrealistic in practice and means that we consider scaled businesses. We exclude

this case from considerations. However, if the assumption holds, then potentially we could

have ρUlt
t = ρ1Y R

t+k+1. If we consider Dependence A without parameters’ uncertainty, then,

by direct calculations, one can check that the ultimate and the one-year correlations are all

equal to ρ, for small (σj,n)
J
j=1, n = 1, 2.

Theorem 4.5 generalizes our preliminary results on the ultimate and the one-year cor-

relations from Section 3.1. The first conclusion from Theorem 4.5 is that the correlation

coefficients which should be used for bottom-up aggregation of stand-alone risk capitals de-

pend on the time horizon and the calendar year of the risk measurement period (at least in

the Hertig’s model). This is a very important conclusion for actuarial practice. The most

straightforward approach in actuarial practice would be to take the one-year correlations be-

tween lines of business from Solvency II Standard Formula, which were developed to derive

the diversified solvency capital requirement in one-year time horizon in the next calendar year

(the regulatory capital in Solvency II), and apply the same correlations in all future calendar

years to estimate the future diversified solvency capital requirements used for the calculation

of the risk margin, as well as to correlate the risk capitals in ultimate time horizon to calculate

the risk adjustment for IFRS 17 standard. Theorem 4.5 shows that the three important cor-

relation coefficients which should be used to derive the Solvency II capital requirement, the

Solvency II risk margin and the IFRS 17 risk adjustment are different. The second conclusion

is that we expect that the ultimate correlation is low compared to the one-year correlations

if the constant L is large (L comes from the Cassels’s inequality, see Section 3.1 for an initial

discussion and Appendix for the proof). We remark that the constant L is large e.g. if there

are large differences in the run-off patterns of Rt+k
1 vs Rt+k

2 for k = 0, ..., J − 1.
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Let us remark that Theorem 4.5 holds in any claims development model provided that

the decomposition formula (4.9) holds. From Wüthrich and Merz (2015) we know that (4.9)

holds approximately in Chain Ladder models, hence we expect that the key conclusions from

Theorem 4.5 should also hold in Chain Ladder models.

In the last theorem, we investigate more closely the ultimate correlation versus the one-

year correlation in the next calendar year. Hence, we compare the correlation coefficients

which should be used for bottom-up risk aggregation in Solvency II and IFRS 17. We assume

an exponential pattern of the volatility parameters which is often observed in practice. We

state our second key relation between the correlations.

Theorem 4.6. We set t = I. For n = 1, 2, let us assume that σj,n = σ0,ne
−αnj, j = 0, ..., J

and the extrapolated volatility σJ+1,n vanishes. For dependence structures A and B and no

parameters’ uncertainty, we have the following relation between the ultimate correlation and

the one-year correlation in the next calendar year

ρUlt
t ≈

√
1− e−2α1

√
1− e−2α2

1− e−(α1+α2)
ρ1Y R
t+1 ≤ ρ1Y R

t+1 . (4.18)

Remark 4.3. In Appendix we show that this approximation is more crude for Dependence

B than A, as it requires faster convergence of σJ+1,n to zero. The equality in (4.18) holds

only for α1 = α2.

Our third conclusion from Theorem 4.6 is that we identify practically relevant cases

when the ultimate correlation is smaller than the one-year correlation in the next calendar

year. In these cases, if an insurance company uses one-year correlations from Solvency II for

ultimate risk aggregation in IFRS 17, it tends to over-estimate the diversified risk capital

in the considered model (the risk adjustment at the level of a company). We note that

the reduction in the correlation coefficient when we switch from the one-year correlation to

the ultimate correlation is large when the volatility parameters in two lines of business have

different tails behavior (α1 is different from α2) and is small when the volatility parameters in

two lines of business have similar tails behavior (α1 is close to α2) – the larger the difference

between α1 and α2, the smaller the ultimate correlation compared to the one-year correlation.

As illustrated in Section 3.1, a larger difference in α1 and α2 implies a larger constant L from

Theorem 4.5, hence the second conclusion from Theorem 4.5 agrees with the conclusion from

Theorem 4.6.

We should point out that the ultimate and the one-year correlations, defined in this paper,

depend on the claims development process assumed here. Clearly, the correlations derived

in our multivariate Hertig’s lognormal model cannot be used in a claims development model
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different from the one in which we calculate the risk measures (variance measures). Yet, we

believe that the formulas presented here could be helpful to infer relations between ultimate

and one-year correlations. Interestingly, our conclusion from Theorem 4.6 agrees with the

result from El Alami et al. (2022), where the authors also show, in a different actuarial model,

that the ultimate correlation is smaller than the one-year correlation in the next calendar

year.

5 Numerical examples

In this section, we investigate possible numerical values of the ultimate and the one-year

correlations, which may be observed in practice, and the impact of misused correlations on

capital. We consider historical loss triangles from eleven lines of business under Solvency II

regulation from the Polish market. For each loss triangle, we estimate the parameters of the

marginal Hertig’s lognormal model and smooth the parameters in late development periods

with exponential functions. We do not estimate any particular dependence structures between

the lines of business, instead we just assume dependence structures A, B and C driven by

the correlation parameter ρ, recall Section 2 for detains on dependence structures.

5.1 Solvency II lines of business 4, 7 and 12

Line 4 is motor vehicle liability insurance, line 7 is fire and other damage to property insurance

and line 12 is miscellaneous financial loss. The volatility parameters (σj)
J
j=1 for lines 4 and 7

are small, hence the approximations presented in the previous sections hold. The volatility

parameters (σj)
J
j=1 for line 12 are large, hence, the approximations fail. Lines 4 and 7 are

more regular and homogeneous lines of business, line 12 is known to be more risky and less

homogeneous. The numerical results confirm the analytical results for lines 4 and 7, and

present new insights for lines 4 and 12.

The ultimate and the one-year correlations are presented in Figure 5. We can clearly

observe that the correlations depend on the time horizon and the calendar year where the

risk emerges. The one-year correlation in the next calendar year (the correlation for Solvency

II capital) is larger than the ultimate correlation (the correlation for IFRS 17 capital) in

all cases. Under Dependence A, the one-year correlations (correlations for Solvency II risk

margin) decrease in the first two calendar years and next they increase in the calendar years

after the calendar year 3. Under dependence B and C, the one-year correlations increase

in the first two calendar years and next they show a decreasing pattern with respect to the
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Figure 5: The one-year correlations in future calendar years (solid lines) and the ultimate

correlations (dotted lines) - lines 4 and 7 (top) and lines 4 and 12 (bottom).

calendar year. We can see that in the one-year correlations can be above and below, and

cross, the ultimate correlation. Yet, for all cases except Dependence A for lines 4 and 12,

the one-year correlations are above the ultimate correlation for most calendar years. Under

Dependence A and B for lines 4 and 7, the one-year correlation in the last calendar year

reaches ρ, whereas in all other cases the one-year correlation in the last calendar year is
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Figure 6: The one-year correlations in future calendar years and the ultimate correlations

(solid lines) as a function of ρ, together with the diagonal (dotted lines) - lines 4 and 7 (top)

and lines 4 and 12 (bottom).

below ρ. The impact of τ on correlations is very small, yet τ has an impact on the mean

square errors of predictions.

In Figure 6 we compare the ultimate and the one-year correlations with the driving

correlation parameter ρ. Under Dependence A, the ultimate and the one-year correlations
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are always below ρ. Under Dependence B and C for lines 4 and 7, the one-year correlations

are above ρ, but under Dependence B and C for lines 4 and 12, the one-year correlations fall

below ρ for large ρ. Under Dependence B and C, the ultimate correlations are above ρ for

small ρ and fall below ρ for large ρ. As pointed out in Section 3.1, ρ = 1 does not necessarily

imply the ultimate and the one-year correlations equal to 1.

From the point of practical applications, the most important is the impact of misused

correlation on capital. We investigate the Solvency II capital requirement, the Solvency II

risk margin and the IFRS 17 risk adjustment. We assume the cost of capital is equal to 6%

and the constant risk-free rate is equal to 3%. For the purpose of calculating the risk margin,

we measure the risk with standard deviation of the one-year loss multiplied with 3 (which

agrees with the approach from Solvency II Standard Formula). For the purpose of calculating

the risk adjustment, we measure the risk with one standard deviation of the ultimate loss

(which is close to the probability of fulfilling the liability at the level of 85% in ultimate time

horizon, the confidence level targeted by many insurance companies). The stand-alone risk

capitals for the two lines of business are calculated with the variance measures presented in

the paper (conditional on the information from the two lines of business) and we aggregate

these stand-alone risk capitals with various correlation coefficients. In Tables 1 and 2, we

present the following measures:

� RA true - the risk adjustment obtained by using the ultimate correlation in the risk

aggregation in ultimate time horizon,

� RA 1YR - the misestimation caused if the risk adjustment is obtained by using the

one-year correlation in the next calendar year in the risk aggregation in ultimate time

horizon,

� SCR true - the solvency capital requirement obtained by using the one-year correlation

in the next calendar year in the risk aggregation in one-year time horizon,

� SCR ult - the misestimation caused if the solvency capital requirement is obtained by

using the ultimate correlation in the risk aggregation in one-year time horizon,

� RM true - the risk margin obtained by using the one-year correlations in the future

calendar years in the risk aggregation in one-year time horizon,

� RM 1YR - the misestimation caused if the risk margin is obtained by using the one-year

correlation in the next calendar year in the risk aggregation in one-year time horizon,
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τ Dep. A Dep. B Dep. C RA true RA 1YR SCR true SCR ult RM true RM 1YR RM ult

0% 25% 0% 0% 512.3 1.3% 1166.5 -1.5% 238.3 0.2% -0.6%

0% 50% 0% 0% 544.4 2.3% 1265.5 -2.6% 249.1 0.4% -1.1%

0% 75% 0% 0% 574.7 3.1% 1357.3 -3.3% 259.3 0.5% -1.5%

0% 0% 25% 0% 801.9 0.4% 1642.8 -0.5% 384.1 -1.6% -1.9%

0% 0% 50% 0% 1028.3 1.3% 2068.2 -1.6% 491.5 -1.0% -1.9%

0% 0% 75% 0% 1213.2 1.9% 2420.0 -2.3% 578.9 -0.4% -1.8%

0% 0% 0% 25% 919.2 0.3% 1798.2 -0.4% 444.7 -1.7% -1.9%

0% 0% 0% 50% 1430.7 0.9% 2588.1 -1.2% 694.3 -0.9% -1.6%

0% 0% 0% 75% 2029.9 1.0% 3473.9 -1.3% 973.1 -0.4% -1.1%

100% 25% 0% 0% 721.7 0.9% 1513.6 -1.1% 340.7 0.2% -0.4%

100% 50% 0% 0% 732.5 1.6% 1576.5 -2.0% 342.0 0.3% -0.8%

100% 75% 0% 0% 728.3 2.4% 1611.1 -2.8% 336.2 0.4% -1.2%

100% 0% 25% 0% 1032.4 0.4% 2066.7 -0.5% 488.9 -1.0% -1.3%

100% 0% 50% 0% 1230.8 1.0% 2464.7 -1.3% 581.0 -0.7% -1.4%

100% 0% 75% 0% 1372.9 1.5% 2748.9 -1.9% 647.9 -0.4% -1.5%

100% 0% 0% 25% 1138.4 0.2% 2207.9 -0.3% 543.0 -1.2% -1.4%

100% 0% 0% 50% 1581.9 0.7% 2903.4 -0.9% 759.3 -0.9% -1.4%

100% 0% 0% 75% 2084.8 0.8% 3607.4 -1.1% 995.7 -0.4% -1.1%

Table 1: Risk capitals and their misestimation resulting from misspecified correlations for

lines 4 and 7.

� RM ult - the misestimation caused if the risk margin is obtained by using the ultimate

correlation in the risk aggregation in one-year time horizon.

Even though we observe (in some cases substantial) differences in the ultimate and the

one-year correlations, the impact of misused correlation on the Solvency II and IFRS 17

capitals is rather small in our numerical example with data from the Polish market. We have

already discussed the roots of this phenomenon in Section 3.2. For lines 4 and 7, the maximal

misestimation of capital is 3.3%, but it is reached for ρ = 0.75, which is likely to be too high

correlation in practice, see Avanzi et al. (2016). For ρ = 0.25, 0.5, the misestimation of

capital is below 2.6%. For lines 4 and 12, the maximal misestimation of capital is 5.4% for

ρ = 0.75, and for ρ = 0.25, 0.5, the misestimation of capital is below 4.6%.

We point out that if we calculate the risk adjustment (the solvency capital requirement)

with the one-year correlation in the next calendar year (the ultimate correlation), instead of

the ultimate correlation (the one-year correlation in the next calendar year), we over-estimate

(under-estimate) the capital. This result agrees with the observation that the ultimate cor-

relation is always lower than the one-year correlation in the next calendar year in all cases

in our example. If we calculate the risk margin with the ultimate correlation, instead of the

one-year correlations in the future calendar years, we under-estimate the risk margin. This

result is intuitive since in our example the one-year correlations in the first calendar year

are always above the ultimate correlations and the capital requirement in the first calendar
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τ Dep. A Dep. B Dep. C RA true RA 1YR SCR true SCR ult RM true RM 1YR RM ult

0% 25% 0% 0% 550.1 2.3% 1316.7 -2.4% 245.7 0.8% -0.5%

0% 50% 0% 0% 583.5 4.0% 1429.0 -4.1% 254.5 1.4% -0.8%

0% 75% 0% 0% 615.2 5.4% 1533.6 -5.4% 262.8 1.9% -1.1%

0% 0% 25% 0% 803.2 2.6% 1734.7 -3.1% 376.0 -0.3% -1.7%

0% 0% 50% 0% 1012.7 3.8% 2143.3 -4.6% 474.5 -0.1% -2.1%

0% 0% 75% 0% 1186.0 4.5% 2486.1 -5.4% 555.4 0.0% -2.3%

0% 0% 0% 25% 904.3 2.7% 1861.8 -3.3% 430.1 -0.4% -1.8%

0% 0% 0% 50% 1364.9 3.3% 2568.2 -4.6% 657.8 -0.2% -1.9%

0% 0% 0% 75% 1900.7 2.6% 3311.7 -3.9% 911.8 -0.1% -1.4%

100% 25% 0% 0% 768.0 1.8% 1715.7 -2.1% 350.0 0.7% -0.3%

100% 50% 0% 0% 780.1 3.4% 1798.3 -3.8% 348.6 1.3% -0.5%

100% 75% 0% 0% 778.3 5.0% 1854.4 -5.3% 340.1 2.0% -0.8%

100% 0% 25% 0% 992.0 2.0% 2056.1 -2.6% 464.1 -0.1% -1.2%

100% 0% 50% 0% 1137.5 2.8% 2333.2 -3.6% 533.6 -0.1% -1.5%

100% 0% 75% 0% 1244.5 3.3% 2534.5 -4.3% 585.7 0.0% -1.7%

100% 0% 0% 25% 1067.2 2.0% 2127.4 -2.6% 505.9 -0.2% -1.2%

100% 0% 0% 50% 1421.2 2.5% 2635.6 -3.5% 683.5 -0.1% -1.4%

100% 0% 0% 75% 1866.2 2.1% 3228.3 -3.2% 895.3 -0.1% -1.2%

Table 2: Risk capitals and their misestimation resulting from misspecified correlations for

lines 4 and 12.

year has the larger impact on the value of the risk margin due to discounting of the capital

requirements and decreasing capital requirements in calendar years (apart from Dependence

A for lines 4 and 12, the ultimate correlations are even below the one-year correlations in

almost all future calendar years). For Dependence A, the one-year correlations in the next

calendar year are above the one-year correlations in the earliest future calendar years, hence

we over-estimate the risk margin if we use the one-year correlation in the next calendar year

instead of the one-year correlations in the future calendar years. For Dependence B and C,

the one-year correlations in the next calendar year are below the one-year correlations in the

earliest future calendar years, hence we under-estimate the risk margin if we use the one-

year correlation in the next calendar year instead of the one-year correlations in the future

calendar years.

5.2 All Solvency II lines of business

In Figures 7 – 11 we present the results for all pairs of lines of business from all eleven lines

of business. The conclusions are similar as for the pairs 4 – 7 and 4 – 12. The only crucial

point is that for Dependence B and C we can observe cases when the ultimate correlation is

above the one-year correlation in the next calendar year. Consequently, the solvency capital

requirement calculated with the ultimate correlation can be over-estimated. The box-plot for
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the risk adjustment is a reflection of Figure 9 relative to 0%.
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Figure 7: The one-year correlation in the next calendar year (the dotted lines represent the

assumed ρ).
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Figure 8: The relative difference of the ultimate correlation compared to the one-year corre-

lation in the next calendar year.
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Figure 9: The misestimation of the Solvency II capital requirement caused by using the

ultimate correlation instead of the one-year correlation in the next calendar year.
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Figure 10: The misestimation of the Solvency II risk margin caused by using the one-year

correlation in the next calendar year instead of the one-year correlations in future calendar

years.
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Figure 11: The misestimation of the Solvency II risk margin caused by using the ultimate

correlation instead of the one-year correlations in future calendar years.

For most pairs of lines of business, the misestimation of the Solvency II and IFRS 17

capitals resulting from misused correlation is small, but it can reach 3%− 6%.

We finally calculate the misestimation of the solvency capital requirement for a portfolio

consisting of all eleven lines of business resulting from using pairwise ultimate correlations

instead of pairwise one-year correlations in the next calendar year. This time as the stand-

alone risk capital in a line of business we use the standard deviation of the one-year loss in

the next calendar year under the information from the single line of business. The results are

presented in Table 3. If we restrict our attention to ρ = 0.25, 0.5, then the Solvency II capital

requirement is under-estimated by 4.1%. Please note that in Figure 9 we identify the cases

where the ultimate correlation is larger and smaller than the one-year correlation, whereas

the results from Table 3 show that the cases when the ultimate correlation is lower than

the one-year correlation are dominant if we take into account the volume of the risk of the

lines of business. The misestimation of 4.1% is not very large, but it should not be neglected

in practice. Let us recall that in Section 3.2 we easily constructed a synthetic example in

which we demonstrate that the capital can be under-estimated by 7% if we use the ultimate

correlation instead of the one-year correlation.
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τ Dep. A Dep. B Dep. C SCR true SCR ult

0% 25% 0% 0% 2221.1 -3.1%

0% 50% 0% 0% 2770.9 -4.1%

0% 75% 0% 0% 3231.3 -4.5%

0% 0% 25% 0% 3139.8 -1.7%

0% 0% 50% 0% 4187.0 -3.2%

0% 0% 75% 0% 5022.3 -4.2%

0% 0% 0% 25% 3413.6 -1.5%

0% 0% 0% 50% 4944.5 -3.0%

0% 0% 0% 75% 6171.5 -3.4%

100% 25% 0% 0% 2596.1 -3.0%

100% 50% 0% 0% 3178.2 -4.1%

100% 75% 0% 0% 3696.7 -4.7%

100% 0% 25% 0% 3672.6 -1.8%

100% 0% 50% 0% 4773.9 -3.0%

100% 0% 75% 0% 5649.8 -3.8%

100% 0% 0% 25% 3921.9 -1.4%

100% 0% 0% 50% 5499.6 -2.6%

100% 0% 0% 75% 6633.9 -3.0%

Table 3: The misestimation of the Solvency II capital requirement caused by using the

ultimate correlation instead of the one-year correlation in the next calendar year for a portfolio

with multiple lines of business.

6 Conclusions

We demonstrate with analytical formulas and numerical examples that the ultimate corre-

lation and the one-year correlations in future calendar years are different in a multivariate

Hertig’s lognormal model of claims developments in multiple lines of business. Our numerical

results based on real data from the Polish market do not show the ultimate and the one-year

correlations can differ to such an extent that they can lead to very large differences in the

Solvency II and IFRS 17 risk capitals if an incorrect correlation is used in the bottom-up

risk aggregation. However, we believe that our results should give a clear signal to actuaries

that the ultimate and the one-year correlations are different and these differences should be

investigated in practice as they may have an impact on calculations performed in Solvency

II and IFRS 17.

Appendix A Proofs

For reader’s convenience, we first recall some known results on the distribution of a multi-

variate Gaussian vector which are used in this paper, and also used by Merz et al. (2012)

and Wüthrich (2015) in their works.
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Theorem A.1. Let X = (X1,X2)
T ∼ N

(
µ,Σ

)
with

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

We have the conditional distribution

X2|X1 = x1 ∼ N
(
µ̃, Σ̃

)
,

µ̃ = µ2 + Σ21Σ
−1
11 (x1 − µ1), Σ̃ = Σ22 − Σ21Σ

−1
11 Σ12,

and the marginal distributions

X1 ∼ N
(
µ1,Σ1

)
, X2 ∼ N

(
µ2,Σ2

)
.

Theorem A.2. Let X|Θ = v ∼ N
(
v,Σ

)
and Θ ∼ N

(
µ,T

)
. We have the joint distribution

(
X,Θ

)T ∼ N
(
µ̃, Σ̃

)
,

µ̃ =

[
µ

µ

]
, Σ̃ =

[
Σ + T T

T T

]
,

and the marginal distribution

X ∼ N
(
µ,Σ + T

)
.

Theorem A.3. Let X ∼ N
(
µ,Σ

)
. Let a and b denote vectors of the same dimension as

X. We have the distribution

aTX ∼ N
(
aTµ, aTΣa

)
.

We also have the formulas for the exponential moments

E
[
ea

TX
]
= ea

Tµ+ 1
2
aTΣa, cov

[
ea

TX, eb
TX
]
= E

[
ea

TX
]
· E
[
eb

TX
]
·
(
ea

TΣb − 1
)
.

Below, we present the proofs of the results from the paper.

The proof of Corollary 2.1: Let us consider the joint multivariate normal distribution of(
ξDt , ξD

c
t
)T

with the covariance matrix

cov
[(
ξDt , ξD

c
t
)T ]

=

[
P Q

Q P

]
,

38



where Q = cov
[
ξDt , ξD

c
t
]
. The elements of Q are calculated with the formula

cov
[
ξi,j,n, ξl,z,m

]
= E

[
cov
[
ξi,j,n, ξl,z,m

∣∣Θ]]+ cov
[
θj,n, θz,m

]
.

Under Dependence A and B and without parameters’ uncertainty, we have cov
[
ξi,j,n, ξl,z,m

]
=

0 for i+ j ̸= l + z, i.e. for (i, j, n) ∈ Dt and (l, z,m) ∈ Dc
t .

The proof of Theorem 3.1: We define u = x/y and consider the function

R(u) =
u2 + 1 + 2up

u2 + 1 + 2uρ
.

We calculate the derivative R′(u) and we conclude that R(u) is maximal if u = 1. If x = y,

then R(1) = 1+p
1+ρ

.

The proof of Theorems 4.2 and 4.4: To prove the formulas for the correlations, we use

Corollary 2.1 and directly substitute the assumed covariance structures into (4.3) and (4.10).

The upper bound for the ultimate and the one-year correlations in Dependence A can be

immediately proved by the Cauchy-Schwarz inequality. To prove the lower bound for the

one-year correlations in Dependence B, we set xi = Ĉt
i,J,nσt+k−i+1,n and yl = Ĉt

l,J,mσt+k−l+1,m.

Next, we deduce that ∑
i,l xiylρ√∑

i x
2
i (1− ρ) +

∑
i,l xixlρ ·

√∑
i y

2
i (1− ρ) +

∑
i,l yiylρ

=

(∑
i xi)

(∑
i yi
)
ρ√∑

i x
2
i (1− ρ) +

(∑
i xi

)2
ρ ·
√∑

i y
2
i (1− ρ) +

(∑
i yi)

2ρ
≥ ρ,

since
∑

i x
2
i ≤

(∑
i xi

)2
. Under the assumptions of Theorem 4.6, the ultimate correlation is

lower than the one-year correlation and the ratio of the ultimate correlation to the one-year

correlation can be sufficiently small (if α1 is different from α2). Hence, there exists a claims

development process for which the ultimate correlation is lower than ρ.

The proof of Proposition 4.1: We derive

Ĉt+k
i,J,n = Ci,t+k−i,ne

(
eT
t+k|i,j≤J,n

µpost
Dc
t+k

+ 1
2
eT
t+k|i,j≤J,n

Spost
Dc
t+k

et+k|i,j≤J,n

)
1{i+J>t+k}

= Ci,t−i,ne
∑t−i+k

j=t−i+1 ξi,j,n+
(
eT
t+k|i,j≤J,n

µpost
Dc
t+k

+ 1
2
eT
t+k|i,j≤J,n

Spost
Dc
t+k

et+k|i,j≤J,n

)
1{i+J>t+k}

= Ci,t−i,ne
eT
t|i,j≤t−i+k,n

ξD
c
t+eT

t+k|i,j≤J,n
QDt+k,Dc

t+k
ξDt+k1{i+J>t+k}+rt|i,k,n

= Ci,t−i,ne
eT
t|i,j≤t−i+k,n

ξD
c
t+eT

t+k|i,j≤J,n
QDt+k,Dc

t+k
PDt+k

PT
Dc
t
1{i+J>t+k}ξD

c
t+rt|i,k,n

= Ci,t−i,ne
pT
t|i,k,nξ

Dc
t+rt|i,k,n .
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In the derivation above, first, we use the estimate (4.2) after time t+k, the claims development

process (2.1) and the definition of the conditional mean from Theorem 2.1. Next, we collect

all Ft+k-measurable terms and the residual term rt|i,k,n collects all Ft-measurable terms. We

notice that PT
Dc

t
ξD

c
t creates a vector of dimension Rd which contains ξi,j,n for (i, j, n) ∈ Dc

t and

sets ξi,j,n = 0 for (i, j, n) ∈ Dt, which allows us to represent the Ft+k-elements from ξDt+k ,

which are not Ft-measurable, with a linear transformation of ξD
c
t . Finally, rt|i,k,n is derived

by the property that

E
[
Ĉt+k

i,J,n

∣∣Ft

]
= Ĉt

i,J,n,

which holds for any k = 0, 1, . . ..

The proof of Theorem 4.3: We use the definition of the loss, equation (4.9), Proposition

4.1, Theorem A.3 and classical formulas for covariance. Moreover, we prove

cov
[
Ĉt+k

i,J,nĈ
t+k+1
l,J,m

∣∣Ft

]
= E

[
cov
[
Ĉt+k

i,J,nĈ
t+k+1
l,J,m

∣∣Ft+k

]∣∣Ft

]
+cov

[
E
[
Ĉt+k

i,J,n

∣∣Ft+k

]
,E
[
Ĉt+k+1

l,J,m

∣∣Ft+k

]∣∣Ft

]
= cov

[
Ĉt+k

i,J,n, Ĉ
t+k
l,J,mFt

]
.

The proof of Theorem 4.5: The result follows from (4.15) and Cassels’s inequality, see

eq. (3.2) in Watson (1955). Let us assume that Rt+k+1
1 ̸= αRt+k+1

2 , for some k = 0, ..., J − 1

and all α > 0. If

corr
[
LUlt,t
1 , LUlt,t

2

∣∣Ft

]
= corr

[
L1Y R,t+k+1
1 , L1Y R,t+k+1

2

∣∣Ft

]
, k = 0, ..., J − 1,

then we get the contradiction

1 =
J−1∑
k=0

Rt+k+1
1 Rt+k+1

2 <

√√√√J−1∑
k=0

|Rt+k+1
1 |2

√√√√J−1∑
k=0

|Rt+k+1
2 |2 = 1.

The proof of Theorem 4.6: We substitute the exponential functions assumed for the

volatility parameters into the formulas for the ultimate correlations from Theorem 4.2 and

match them with the one-year correlations from Theorem 4.4.

Dependence A. We derive

J∑
j=t−i+1

σj,1σj,2ρ =
J∑

j=t−i+1

σ0,1σ0,2e
−α1·je−α2·jρ

= σ0,1σ0,2
e−(α1+α2)(t−i+1) − e−(α1+α2)(J+1)

1− e−(α1+α2)
ρ

≈ σ0,1σ0,2
e−(α1+α2)(t−i+1)

1− e−(α1+α2)
ρ =

σt−i+1,1σt−i+1,2ρ

1− e−(α1+α2)
.
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In the same way, we handle
∑J

j=t−i+1 σ
2
j,n. In order to have a good approximation, the

following conditions should be satisfied

σJ+1,1σJ+1,2 ≈ 0, σ2
J+1,1 ≈ 0, σ2

J+1,2 ≈ 0. (A.1)

Dependence B. First, we derive

J∧(J+l−i)∑
j=t−i+1

σj,1σi+j−l,2ρ =

J∧(J+l−i)∑
j=t−i+1

σ0,1σ0,2e
−α1·je−α2·(i+j−l)ρ

= σ0,1σ0,2
e−α1·(t−i+1)e−α2·(t+1−l) − e−(α1+α2)·(J∧(J+l−i)+1)−α2·(i−l)

1− e−(α1+α2)
ρ.

Next, we show that

(α1 + α2) · (J ∧ (J + l − i) + 1) + α2 · (i− l) ≥ α1(J + 1) + 2α2,

if i ≤ l, and

(α1 + α2) · (J ∧ (J + l − i) + 1) + α2 · (i− l) ≥ α2(J + 1) + 2α1,

if i ≥ l, since we consider i and l from I − J + 1 up to I and, consequently, |i− l| ≤ J − 1.

We conclude that

J∧(J+l−i)∑
j=t−i+1

σj,1σi+j−l,2ρ ≈ σ0,1σ0,2
e−α1·(t−i+1)e−α2·(t−l+1)

1− e−(α1+α2)
ρ = σt−i+1,1σt−l+1,2ρ.

We handle
∑J

j=t−i+1 σ
2
j,n as for Dependence A. In order to have a good approximation, this

time the following conditions should be satisfied

σJ+1,1σ2,1 ≈ 0, σJ+1,1σ2,2 ≈ 0, σJ+1,2σ2,1 ≈ 0, σJ+1,2σ2,2 ≈ 0,

σ2
J+1,1 ≈ 0, σ2

J+1,2 ≈ 0. (A.2)

We observe that (A.2) is stronger than (A.1).
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