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Abstract

Regression modeling for insurance pricing mostly focuses on mean estimation. Using a

strictly consistent loss function implies that the mean estimates are asymptotically correct.

However, this is a limiting statement and insurance prices are calculated on finite samples. It is

known that under heteroskedasticity suitable variance estimates can significantly improve the

regression model estimation. In this paper we investigate isotonic regression which is a non-

parametric rank-preserving regression approach. This isotonic regression is used to (1) explore

the power variance parameter of the variance function within Tweedie’s family of distributions,

(2) derive a semi-parametric bootstrap under heteroskedasticity, (3) provide a test for auto-

calibration, (4) explore a quasi-likelihood approach to benefit from best-asymptotic estimation,

(5) deal with several difficulties under lognormal assumptions. In all these problems we verify

that variance estimation using an isotonic regression is very beneficial.

Keywords. Isotonic regression, regression model, generalized linear model, GLM, Tweedie’s

family, power variance parameter, heteroskedasticity, best-asymptotic normal, quasi-likelihood,

lognormal model, auto-calibration, T-reliability diagram, miscalibration, strict consistency, de-

viance loss, Bregman divergence, bootstrap.

1 Introduction

We start with a general set-up of actuarial and statistical learning. We consider a response variable

Y with conditional mean and variance, respectively,

E[Y |x] = µ(x,θ) and Var[Y |x] = ϕV (µ(x,θ)), (1.1)

where x ∈ Rd is a d-dimensional feature vector that characterizes the response and θ ∈ Rk is a k-

dimensional parameter vector of the functional µ. In a generalized linear model (GLM) framework

we set k = d, and we assume

g(µ(x,θ)) = η(x,θ) = x⊤θ, (1.2)

for a given strictly monotone and smooth link function g. The function η is called linear predictor

since it defines a linear regression function in x. The function V in (1.1) is a variance function
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which describes the relation between the variance and the expected value of the response, and

ϕ > 0 is a dispersion parameter. If we deal with claim frequencies, we usually assume that Y has

a Poisson distribution. This implies a linear variance function, that is, V (µ) = µ. If we deal with

claim severities, we often assume that Y has a Gamma distribution, which implies V (µ) = µ2.

More generally, if we assume that Y has a Tweedie’s distribution, we have power variance function

V (µ) = µp for some p ≥ 1 or p ≤ 0.

Under the assumption of having a GLM, the goal is to estimate regression function (1.2) from

data, i.e., to estimate θ ∈ Rk from independent data points (Yi,xi)
n
i=1, assumed that all follow the

same GLM. Once the distribution of the response is properly specified, and if the distribution is a

member of the exponential dispersion family (EDF), the parameter θ ∈ Rk is estimated with the

maximum likelihood estimation (MLE) method by minimizing the deviance loss function L of the

chosen distribution from the EDF, that is, subject to existence and uniqueness, we solve

θ̂ = arg min
θ∈Rd

n∑
i=1

L(Yi, µ(xi,θ)). (1.3)

In practice, it is very unlikely that the response exactly follows the chosen distributional assumption.

Fortunately, we can apply the quasi-likelihood method for GLMs developed, among others, by

Wedderburn (1974), McCullagh (1983), Nelder–Pregibon (1987), Firth (1987) and Gourieroux et

al. (1984). Let us choose any deviance loss function L derived from a particular distribution from

the EDF, e.g., the Poisson, the Gamma or Tweedie’s deviance. We still use the GLM model

equation for the mean value of the response, that is, for i = 1, . . . , n, we assume

E[Yi|xi] = µ(xi,θ), (1.4)

but we do not require that the response comes from the distribution used for specifying this deviance

loss function. In fact, we do not even require that the second moment assumption implied by the

deviance loss function is correct. We can still estimate θ by minimizing objective function (1.3).

From Theorems 1-3 in Gourieroux et al. (1984) we know that this estimate is strongly consistent;

this is related to the fact that deviance loss functions are strictly consistent scoring functions for

mean estimation, see Gneiting (2011). The important point in Gourieroux et al. (1984) is that we

can gain asymptotic estimation efficiency in the quasi-likelihood method by properly specifying the

variance function of the response, that is, if we have the right structure and level in the second

moment

Var[Yi|xi] = ϕV (µ(xi,θ)). (1.5)

If we correctly specify the variance function V and insert it into the deviance loss function (1.3),

then the resulting estimator is best asymptotically normal, i.e., it achieves asymptotically the

smallest variance among all estimators found by minimizing deviance loss functions within the

EDF; see Theorem 4 in Gourieroux et al. (1984). Moreover, it has asymptotically the smallest

variance among all unbiased estimators for which the influence function is linear; see McCullagh

(1983) and Firth (1987). These results motivate the need to investigate the variance function in

practical actuarial and statistical learning tasks.
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To the best of our knowledge, estimation of the variance function and its impact on mean

estimation has not been considered in an actuarial context and in GLMs. At the same time, the

problem is well-known in statistics and in linear regression modeling. Carroll (1982) and Müller–

Stadtmüller (1987) show that if the variance of a response is a smooth function of the mean, then

mean estimation of a linear regression function using weighted least squares with non-parametrically

estimated variances is asymptotically equivalent to weighted least squares with known variances.

Hall–Carroll (1989) and Ruppert et al. (2012) show that a variance function can be estimated

non-parametrically with an accuracy which is optimal if the mean was known. Applying these

two results, Davidian–Carroll (2012) suggest to iteratively re-fit mean and variance to improve the

accuracy of both estimates.

The first contribution of this paper is to demonstrate the impact on mean estimation of a

misspecification of the variance function, and to propose a quasi-likelihood algorithm for mean

estimation where the variance function is estimated non-parametrically with an isotonic regression.

We illustrate that the variance estimation becomes less important as the sample size increases, but

it is important even for large samples if the responses are skewed and/or heavy-tailed. We explore

isotonic regression for variance estimation because it is popular and easy to use, see, e.g., Yang–

Barber (2019) and Wüthrich–Ziegel (2023), and we show its advantages in our examples. The second

contribution is to develop several diagnostic tools for mean estimation which require, irrespective

of the sample size, precise variance estimates. In particular, we discuss quantile residuals from

GLMs, which are defined with mean and variance estimates, and their role in validating mean

estimates. Next, we use quantile residuals to perform a bootstrap which allows us to verify the

auto-calibration property of mean estimates. Auto-calibration is a key condition which should be

studied for mean estimates as a part of the model assessment, see Pohle (2020), Gneiting–Resin

(2021), Krüger–Ziegel (2021), Denuit et al. (2021), Fissler et al. (2022) and Chapters 5.1.5 and 7.4.2

in Wüthrich–Merz (2023) for auto-calibration. We demonstrate how to derive confidence bands for

T-reliability diagrams and critical values of miscalibration tests based on strictly consistent scoring

functions (in our case of GLMs – based on deviances). Finally, the third contribution concerns

MLE of mean values of lognormally distributed responses. If we know the true distribution of the

response, the efficiency of quasi-likelihood estimation for mean values can be increased if we apply

the MLE method. In actuarial practice, we often deal with claim sizes that are approximated

by lognormal distributions. The application of the MLE method, which is applied by fitting a

Gaussian linear model to the responses on the log scale, is limited since for mean estimation on the

original scale we have to precisely estimate the variances of the responses on the log scale, because

they naturally enter the lognormal mean through Jensen’s inequality. Under heteroskedasticity this

may be challenging. We use the methods of variance estimation developed in the first part of this

paper for the quasi-likelihood method and apply them to propose an algorithm for MLE of mean

values under lognormal assumptions where the variances are estimated non-parametrically with an

isotonic regression.

In Section 2 we describe the synthetic data sets investigated in the paper. We start with

assessing the performance of a classical Gamma GLM fitted to our synthetic claim sizes. Next,

we improve the initial estimates by applying our estimation methods. We also implement our

validation methods. The general workhorse we use is isotonic regression (Section 3). We illustrate

this in four examples:
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� Validation of Tweedie’s power variance function (Section 4);

� Quantile residuals and bootstrap techniques used for deriving confidence bands for T-reliability

diagrams and the distribution of a miscalibration test (Section 5);

� Quasi-likelihood estimation of mean values with the variance function estimated using an

isotonic regression (Section 6);

� MLE of mean values for lognormally distributed responses with variance functions estimated

from an isotonic regression and back-transformation of the estimates from the log scale to the

original scale (Sections 7 and 8).

2 Synthetic data sets

In our examples, we use three synthetic data sets that are built on the data set swmotorcycle

from the R package CASdatasets; see Dutang–Charpentier (2018). In our experiments we consider

claims sizes. We apply the same data cleaning and transformations to swmotorcycle as described

in Chapter 13.2 of Wüthrich–Merz (2023). In the first step, we estimate a regression function for

the claim sizes on the original data (after cleaning) with a classical Gamma GLM using the log-

link function for g, see (1.2). As features x we include the following variables into the regression

function: OwnerAge, OwnerAge2, Gender, Area, RiskClass, VehAge, VehAge2, VehAge3, VehAge4;

see Chapter 5.3.7 in Wüthrich–Merz (2023) and Section 4.2 in Delong et al. (2021). In the next

step, we create our synthetic data sets.

We discuss how synthetic Data Set 1 was created. We specify the features, the expected values

and the variances of the claim sizes for all instances in our synthetic portfolio, together with the

distribution function of the claims sizes. Hence, we know the ground truth about the distributions

of the claim sizes and their parameters. We sample with replacement n = 20, 000 instances (feature

values (xi)
n
i=1) from the original data set. We calculate the expected claim sizes of the given features

xi using the estimated Gamma GLM regression function from the first step, and we assume that

these estimates are the true mean values
(
µ(xi)

)n
i=1

of the claim sizes Yi in our synthetic Data Set

1. The empirical density of the true mean values
(
µ(xi)

)n
i=1

is presented in Figure 2.1 (lhs). Since

we are mainly concerned about variance estimation and its impact on mean estimation, we choose

a bit a special variance function which has different regimes for different ranges of the expectations:

V (µ) = µ21{µ < µ∗
1} +

(
c1 + µ2 log(µ)

)
1{µ∗

1 ≤ µ < µ∗
2} +

(
c2 + µ3)1{µ ≥ µ∗

2}; (2.1)

see Figure 2.1 (right). The thresholds 0 < µ∗
1 < µ∗

2 < ∞ were chosen as the 50% and the 90%

deciles of the expected values
(
µ(xi)

)n
i=1

calculated from the synthetic Data Set 1. With this

choice of the variance function, we assume that the observations with expected values below µ∗
1

have a light-tailed Gamma variance function, the observations with expected values in the interval

(µ∗
1, µ

∗
2) have a heavier tail, between the Gamma and the Inverse Gaussian variance function, and

the observations in the far right tail with expected values above µ∗
2 have a more heavy-tailed

Inverse Gaussian variance function. The constants c1, c2 were chosen so that the variance function

is continuous at the slicing points µ∗
1 and µ∗

2. Finally, we simulate n = 20, 000 claim sizes (Yi)
n
i=1

from lognormal distributions with the two moments
(
µ(xi), ϕV (µ(xi)

)n
i=1

specified as above. For
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the simulations, the dispersion parameter was set to ϕ = 0.015, and the standard deviation of

the claim sizes in the synthetic Data Set 1 is slightly larger than the standard deviation of the

claim sizes in the original data set. In the sequel, we integrate the dispersion parameter ϕ into the

variance function V , and we re-define V (µ) := ϕV (µ).
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Figure 2.1: Empirical density of true mean values of the claim sizes, and the choice of the true
variance function in the Data Set 1; the green lines show the 50% and 90% deciles of the true mean
values used as the splicing points for the variance.

Synthetic Data Set 2 was created in the same way as synthetic Data Set 1, but we sampled n =

100, 000 instances from the original data set and simulated n = 100, 000 claim sizes from lognormal

distributions. Given that claim frequencies are low in motor insurance, a sample size of 20, 000

reflects a medium-size insurer and a sample size of 100, 000 is a larger insurer (2 mio. insurance

policies if the claim frequency is 5%).

Synthetic Data Set 3 was created in a slightly different way. We take n = 20, 000 instances from

the synthetic Data Set 1 and their logged mean values η(xi) = log(µ(xi)) calculated with the linear

predictor from the Gamma GLM fitted to the original data set. We now assume that these values

define the true expected values of the claim sizes on the logarithmic scale (the expected values of

Zi = log(Yi)). The true variances of the claim sizes on the logarithmic scale are defined based on

the variance function (2.1) with the following transformation:

V (η) = log

(
1 +

V
(
eη
)(

eη
)2
)
. (2.2)

We simulate n = 20, 000 claim sizes (Yi)
n
i=1 from lognormal distributions with the two moments on

the logarithmic scale
(
η(xi), ϕV (η(xi)

)n
i=1

specified as above, with ϕ = 0.015. The reason for this

construction will become clear in Section 7.

Unless otherwise stated, we study the claim sizes from synthetic Data Set 1. First, we follow the

classical approach in actuarial modeling and fit a Gamma GLM with quadratic variance function

V (µ) = µ2 and log-link function g(µ) = log(µ) to our observations. The parametric form of the

linear regression function for mean estimation of the response is properly specified, i.e., we use the

same features as regressors in the Gamma GLM that have also been used in the first regression
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function to create the synthetic data set. However, based on (2.1), the variance function and the

distribution of the responses are misspecified, because we fit the classical Gamma GLM to Data Set

1. As a result, the Gamma GLM provides a very poor fit in terms of mean estimates, see Figure

2.2 which compares the estimated means against their true values. In particular, the classical

approach with a Gamma GLM under- and over-estimates the true means by +/−30% for our data

set, especially in the tails. This happens because the Gamma model cannot properly explain the

small and large claims in the tails. The goal is to improve these mean estimates.
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Figure 2.2: Estimated means from the Gamma GLM against true means for all instances; the
darker the color, the larger the density of the observations with the particular means.

In practice, the true means are unknown. In the sequel, we validate the mean estimates with

our diagnostic tools. To confirm the conclusions based on the diagnostic tools, we also compare

the estimated means against the true means.

3 Isotonic regression

The general purpose tool that we are going to use in this paper is isotonic regression. Isotonic

regression is a rank based non-parametric regression approach that preserves monotonicity in pre-

specified ranks (π(xi))
n
i=1; we refer to Ayer et al. (1955), Brunk et al. (1957) and Barlow et al.

(1972). Assume we have data points (Yi, π(xi))
n
i=1 and positive case weights (wi)

n
i=1. Would like to

fit a non-parametric regression model to the responses (Yi)
n
i=1 which respects the ranks (π(xi))

n
i=1.

That is, we consider the following optimization problem

µ̂ = arg min
µ=(µ1,...,µn)⊤∈Rn

n∑
i=1

wi (Yi − µi)
2 ,

(3.1)

subject to µj ≤ µk ⇐⇒ π(xj) ≤ π(xk) for all 1 ≤ j, k ≤ n.

We give some remarks.

6



Remarks 3.1. � Optimization problem (3.1) can be solved using the pool adjacent violators

(PAV) algorithm of Ayer et al. (1955), Miles (1959) and Kruskal (1964). The resulting solution

fulfills the (empirical) auto-calibration property, and it can also be written as the following

min-max formula, for 1 ≤ i ≤ n,

µ̂i = min
j=i,...,n

max
k=1,...,j

1∑j
l=k wl

j∑
l=k

wlYl;

see also Wüthrich–Ziegel (2023).

� If there are ties in the ranks (π(xi))
n
i=1, we adjust the corresponding observations. E.g., if

π(xi) = π(xj) for some i ̸= j, we replace Yi and Yj with their weighted average (wiYi +

wjYj)/(wi +wj) and assign the adjusted case weights (wi +wj)/2 to these new observations.

There are other options to deal with ties; we refer to Leeuw et al. (2009).

� The solution to (3.1) only defines the regression values µ̂i in the observations/ranks π(xi).

A common way to interpolate between these regression values is to use a step function, see,

e.g., Figure 4.1, below. Alternatively, we could connect subsequent estimates µ̂i linearly by

straight lines.

� The objective function in (3.1) is given by the (weighted) square loss. However, every Bregman

divergence will give the same result because this restricted optimization problem is invariant

under different choices of strictly consistent loss functions for mean estimation; see Theorem

1.10 in Barlow et al. (1972). These strictly consistent loss functions are precisely the Bregman

divergences; see Savage (1971) and Gneiting (2011). Moreover, every deviance loss function is

a Bregman divergence, thus, the solution of (3.1) will not change if we replace the (weighted)

square loss by a general (weighted) deviance loss.

4 Example 1: Validation of Tweedie’s power variance function

To start with, we propose a diagnostic tool to assess the variance function of the implemented GLM.

Often, in actuarial science, one works within the framework of Tweedie’s distributions (including the

Poisson, the Gamma and the Inverse Gaussian distributions). Tweedie’s distributions are special

cases of the EDF. Tweedie’s distributions have the property that the variance of the corresponding

response variable Yi with feature xi is given by

Var[Yi|xi] = ϕV (µ(xi)) = ϕµp(xi), (4.1)

for a power variance parameter p ∈ (−∞, 0] ∪ [1,∞) and a (constant) dispersion parameter ϕ > 0.

Hence, Tweedie’s distributions assume a power variance function with power variance parameter p;

for Tweedie’s distributions we refer to Tweedie (1984) and Jørgensen (1987). Typically, one works

with p ≥ 1. Since we fit a Gamma GLM (which has a quadratic variance function) in the first step

of our analysis, we should verify whether p = 2 is the right choice for our data set.

Let us fix a certain power variance parameter p ≥ 1, say p = 2 for the fitted Gamma GLM, and

assume that µ(xi) > 1 for all considered features xi. This implies that µp(xi) is strictly increasing
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in the power variance parameter p ≥ 1, and we can validate the specific choice of p by restructuring

(4.1). Namely, we have dispersion coefficients for each instant i

ϕi =
Var[Yi|xi]

µp(xi)
,

and this motivates to consider Pearson’s (empirical) residuals

ϕ̂i =
(Yi − µ̂(xi))

2 /(1 − hi)

µ̂p(xi)
, (4.2)

where (µ̂(xi))
n
i=1 denote the mean values estimated with a Tweedie’s GLM with variance function

V (µ) = µp, and (hi)
n
i=1 denote the hat values from the estimated Tweedie’s GLM. The hat values

provide a bias corrected version of the empirical variance; see Smyth–Verbyla (1999). We can now

fit an isotonic regression to the observations
(
ϕ̂i, µ̂(xi)

)n
i=1

, where we either assume a monotonically

increasing or a monotonically decreasing property of Pearson’s residuals ϕ̂i in µ̂(xi). That is, we

consider the estimated means µ̂(xi) as ranks π(xi) in the isotonic regression (3.1), and Pearson’s

residuals ϕ̂i play the role of the corresponding responses. If the isotonic regression gives a horizontal

straight line in both cases, then ϕ in (4.1) is constant in i and the specific choice of the power variance

parameter p is correct. Otherwise, the sign of the isotonic regressions will tell us whether the choice

of p is too small or too big.
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Figure 4.1: Logged Pearson’s residuals estimated with an isotonic regression against logged esti-
mated means from the Gamma GLM for all instances. The green lines show the 50% and 90%
deciles of the true logged mean values used as the splicing points for the true variance (2.1).

We apply the above diagnostic tool to the mean estimates from the Gamma GLM, the results

are presented in Figure 4.1. We observe that Tweedie’s quadratic variance function (with p = 2)

should be rejected for our data set. From Figure 4.1 we conclude that the quadratic variance

function is correct for observations with estimated means below roughly 12,000. Above this mean

value, the variance function behaves like a power function with a power parameter of order larger

than 2, and the value of the power parameter changes (increases) around the estimated mean of

roughly 28,000. These conclusions agree with our assumptions on the true variance function in
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Figure 2.1. Thus, it is evident that a simple Tweedie’s power variance function is not sufficient

for our data set, and we should move outside the class of Tweedie’s power variance functions and

fit a different (and more flexible) variance function. We also conclude that performing an isotonic

regression on Pearson’s residuals (4.2) using the estimated means µ̂(xi) as the ranks equips us in

this problem with a simple diagnostic tool that provides us with the correct insights concerning the

true variance behavior.

5 Example 2: Miscalibration test and confidence bands for T-

reliability diagrams

The importance of the auto-calibration property for insurance pricing has been outlined in the

actuarial literature by Denuit et al. (2021), Lindholm et al. (2023), Wüthrich (2023), Wüthrich–

Ziegel (2023) and Denuit–Trufin (2023). Based on the literature in statistics on forecast evaluation,

see Pohle (2020), Dimitradis et al. (2020), Gneiting–Resin (2021) and Dimitradis et al. (2022),

we develop two techniques which allow us to assess if the mean estimates from a fitted model are

auto-calibrated. These techniques use quantile residuals which themselves can be used for model

diagnostic purposes.

In the sequel we use the notation (Y,X) to denote the random selection of a feature X from

an insurance portfolio, and Y is the corresponding claim. The observations (Yi,xi)
n
i=1 are then

assumed to be an i.i.d. sample of size n with the same distribution as (Y,X).

A regression function x 7→ µ(x) is auto-calibrated for (Y,X) if

µ(X) = E [Y |µ(X)] , P-a.s. (5.1)

In actuarial pricing, auto-calibration means that every price cohort µ(X) is in average self-financing

for its claim Y . This implies that there is no systematic cross-financing within the price system

µ(·). Auto-calibration is a quality criterion that every insurance price system µ(·) should fulfill.

We observe that the best-estimate price

µ∗(X) := E [Y |X]

is auto-calibrated. In fact, this price is called best-estimate because it minimizes every Bregman

divergence, see also Remarks 3.1 on strict consistency. In particular, this applies to the gamma

deviance loss which we use for the claim sizes. Moreover, the best-estimate price dominates in

convex order any other auto-calibrated σ(X)-measurable price, and it also attains the maximal

Gini index among all auto-calibrated σ(X)-measurable prices. This gives us model selection criteria

that all provide the best-estimate price as the optimal regression function based on information

σ(X); see Wüthrich (2023) and Denuit–Trufin (2023). However, since this best-estimate µ∗(·) can

be any σ(X)-measurable function, it is typically intractable, and we aim at approximating it within

a sufficiently tractable model class of regression functions. The goal is to build a mean estimator

µ̂, which accurately approximates the best-estimate price µ∗, and which fulfills the auto-calibration

property (5.1).

Assume that L(m,Y ) is a strictly consistent loss function for the mean functional, e.g., the

unscaled or scaled gamma deviance loss. Then, we can (empirically) assess the prediction accuracy
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of a mean estimator µ̂ by the score

S(Y , µ̂) :=
1

n

n∑
i=1

L(Yi, µ̂(xi)), (5.2)

which is an empirical version of the expected loss

E [L(Y, µ̂(X))] . (5.3)

Strict consistency of L for the mean functional implies that this expected loss (5.3) is minimized

by the true regression function µ∗.

When we fit a GLM, we restrict the class of regression functions to linear functions in the

features x after applying the selected link g, see (1.2). The mean estimator µ̂ is then found by

minimizing the empirical score (5.2) in θ, see (1.3). However, in general, the estimated GLM mean

values
(
µ̂(xi)

)n
i=1

are not auto-calibrated. As emphasized in Dimitradis et al. (2020), Gneiting–

Resin (2021), Dimitradis et al. (2022) and Wüthrich–Ziegel (2023), an isotonic regression can be

fitted to (Yi, µ̂(xi))
n
i=1, providing an empirically auto-calibrated version µ̂rc of µ̂. This isotonically

recalibrated version µ̂rc then motivates to consider Murphy’s score decomposition

S(Y , µ̂) = UNCS(Y , µ̂) − DSCS(Y , µ̂) + MCBS(Y , µ̂), (5.4)

with the uncertainty, discrimination and miscalibration statistics, respectively,

UNCS(Y , µ̂) = S(Y , µ̄),

DSCS(Y , µ̂) = S(Y , µ̄) − S(Y , µ̂rc) ≥ 0,

MCBS(Y , µ̂) = S(Y , µ̂) − S(Y , µ̂rc) ≥ 0,

with µ̄ =
∑n

i=1 Yi/n being the empirical mean not considering any features; we refer to Murphy

(1973), Pohle (2020), Dimitradis et al. (2020) and Gneiting–Resin (2021). A small value of the

miscalibration statistics MCBS(Y , µ̂) supports the hypothesis that the estimated mean values µ̂

are auto-calibrated. We formalize this. We set the null hypothesis H0 : MCBS(Y , µ̂) = 0 against

the alternative H1 : MCBS(Y , µ̂) > 0. The perform a statistical test, we need to derive a critical

value for this miscalibration test (for a given significance level).

A key diagnostic tool in statistics for checking auto-calibration of a regression function is a

reliability diagram (also called a lift plot in the actuarial literature). Reliability diagrams plot the

observed empirical means against the estimated mean values in pre-defined bins; this was introduced

by Hosmer–Lemeshow (1980) in a binary context. It is known that reliability diagrams are sensitive

to the choice of the bins; see, e.g., Henzi et al. (2023). Dimitradis et al. (2020) introduce a new

approach to reliability diagrams where one compares the estimated mean values
(
µ̂(xi)

)n
i=1

against

their recalibrated values
(
µ̂rc(xi)

)n
i=1

, where, again, µ̂rc is constructed from µ̂ with an isotonic

regression. Such reliability diagrams are called CORP, since, following Dimitradis et al. (2020):

� C: the reliability diagrams and associated numerical measures of miscalibration are consistent

in the classical statistical sense of convergence to population characteristics (consistency);

� O: the reliability diagrams are optimally binned (optimality);
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� R: the reliability diagrams do not require any tuning parameters nor implementation decision

(reproducibility); and

� P: the reliability diagrams are implemented via the PAV algorithm (pool adjacent violators

algorithm).

Later, Gneiting–Resin (2021) introduced a more general notion of conditional T-calibration (auto-

calibration with respect to T) and T-reliability diagrams, where T in our case denotes the mean

functional; this explains the terminology T-reliability diagram. If
(
µ̂rc(xi)

)n
i=1

match
(
µ̂(xi)

)n
i=1

,

i.e., the points
(
µ̂(xi), µ̂rc(xi)

)n
i=1

of a T-reliability diagram lie close to its diagonal, the mean

estimator µ̂ is auto-calibrated. We would like to formally evaluate the significance of the observed

deviations from the diagonal. For this we construct point-wise confidence intervals, i.e., confidence

bands, for a T-reliability diagram.

Gneiting–Resin (2021) propose to explore the problem with bootstrap, see Appendix B in

Gneiting–Resin (2021). We develop this proposal of Gneiting–Resin (2021), and it turns out that

bootstrapping of residuals from GLMs with non-Gaussian responses poses some challenges. In our

case, and in most practical applications in insurance, we have to handle proper support, unknown

heteroskedasticity and unknown distribution of the response to correctly implement the bootstrap.

We explain this in detail.

Let µ̂ denote the mean estimator we want to validate. We recommend the following semi-

parametric bootstrap approach.

Semi-Parametric Bootstrap Approach

� Step 1: To account for heteroskedasticity, we estimate the variances of Yi|xi for all instances

1 ≤ i ≤ n under the estimated means
(
µ̂(xi)

)n
i=1

by an isotonic regression assuming that

these variances are monotonically increasing in the means. We fit an isotonic regression to(
v̂i, µ̂(xi)

)n
i=1

, where

v̂i =
(Yi − µ̂(xi))

2

1 − hi
, (5.5)

and (hi)
n
i=1 are the hat values from the fitted model. The isotonic regression provides us with

variance estimates V̂ (xi) for all instances 1 ≤ i ≤ n under the estimated means. Hence, we

have estimated the first two moments of the observations.

� Step 2: We calculate the quantile residuals defined by ε̂i = F
(
Yi, µ̂(xi), V̂ (xi)

)
for all in-

stances 1 ≤ i ≤ n, where we use a two-parametric cumulative distribution function F with

the first two (estimated) moments
(
µ̂(xi), V̂ (xi)

)n
i=1

.

� Step 3: Under an i.i.d. assumption for the quantile residuals, we bootstrap (ε∗i )
n
i=1 from

(ε̂i)
n
i=1 to receive the bootstrap observations:

Y ∗
i = F−1

(
ε∗i , µ̂(xi), V̂ (xi)

)
.

If we map ε̂i 7→ Φ−1(ε̂i) with the inverse of standard normal cumulative distribution function,

we can center and scale the quantile residuals to get better performance of residual re-sampling

11



in small samples.

� Step 4: Based on the new sample
(
Y ∗
i , µ̂(xi)

)n
i=1

, we recalibrate the mean estimator µ̂ with an

isotonic regression, plot the T-reliability diagram and calculate the miscalibration statistics.

From repreating this semi-parametric bootstrap, we can construct empirical confidence bands

for the T-reliability diagram and find critical values for the miscalibration test, under the null

hypothesis that
(
µ̂(xi)

)n
i=1

are the best-estimate prices, hence, auto-calibrated.

Clearly, a good estimate of the variance of the response, Var[Yi|xi], is crucial if we deal with

heterogeneous observations. In practice, the true form of heterogeneity may be different from the

one assumed in the fitted GLM (Poisson, Gamma, Inverse Gaussian, Tweedie’s distributions) and

we need to estimate this variance as good as possible to obtain a reasonable bootstrap simulation;

the discussion of this step is missing in Gneiting–Resin (2021). In Step 1, we use an isotonic

regression for this variance estimation, but also other parametric or non-parametric estimators

could be applied. The next difficulty is that a naive resampling scheme of the responses can

be problematic given that the bootstrapped claim sizes Y ∗
i must be positive, i.e., should have a

restricted support. The classical approach is to use empirical Pearson’s residuals calculated based

on
(
µ̂(xi), V̂ (xi)

)n
i=1

. However, by construction, this boostrap approach does not respect support

constraints. If we manually correct negative bootstrapped claim sizes by max{Y ∗
i , 0}, we face a

bias. This bias becomes particularly visible for observations with large estimated variances. For this

reason, we switch to bootstrapping with quantile residuals. Quantile residuals were introduced by

Dunn–Smyth (1996) in regression models and proposed in Chapter 4.4 of Politis (2015) for a ”model-

free” bootstrap of regression models; quantile residuals are also called PIT (Probability Integral

Transform) residuals, see Gneiting–Resin (2021). In Step 2, in order to define quantile residuals,

we have to specify a distribution function F , in addition to the mean and variance estimates. This

distribution function should be chosen (estimated) based on the observations, so that the resulting

variables (ε̂i)
n
i=1 are (approximately) i.i.d., but not necessary uniformly distributed. Ideally, F is

the true distribution of the response. Note that we still use a non-parametric bootstrap in Step

3 since we sample from these empirical quantile residuals (ε̂i)
n
i=1, but combining Steps 2 and 3,

we call this approach a semi-parametric boostrap. In case the true F is known, we can use a

parametric bootstrap based on this knowledge (we use a parametric bootstrap in Sections 7 and

8 where we directly use the assumption that the claim sizes come from lognormal distributions).

The semi-parametric bootstrap with quantile residuals is slightly more robust to misspecification

of the true distribution of the response than a parametric bootstrap. We remark that the quantile

residuals will play two roles in the analysis below: they are used for bootstrap, and they are also

used to validate the estimates of the mean and the variance.

We use the above semi-parametric bootstrap algorithm to investigate the quality of the mean

estimates
(
µ̂(xi)

)n
i=1

from our first model, the Gamma GLM. The result of Step 1, i.e., the esti-

mation of the variance function based on (5.5) using an isotonic regression is presented in Figure

5.1, and our isotonic regression estimate is compared to the true variance function (2.1). This

plot is called ’initial’ since we use the initial mean estimates from the Gamma GLM for variance

estimation, these estimates will be refined in the next section. At this point, without referring

to the true variance function, we can see that our estimate of the variance function is far from
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Figure 5.1: Logged variance function estimated with an isotonic regression based on means esti-
mated with the Gamma GLM for a range of logged mean values.

a quadratic function, hence a Gamma GLM with quadratic variance function should not be used

for this data set. Figure 5.1 verifies that our initial variance estimate using an isotonic regression

fits the true variance already quite well, though we have not used the true distribution (we use a

gamma GLM for lognormal data) and in this GLM estimation we did not account for (the correct)

heteroskedasticity.

Based on Step 1, we can use the semi-parametric bootstrap steps from the above algorithm to

validate auto-calibration of the mean estimator (we point out that for a resonable bootstrap we

use the isotonic regression variance estimate from Figure 5.1, and not the quadratic variance of the

fitted Gamma GLM). In order to derive the quantile residuals, we choose a Gamma distribution

(Step 2), this choice is the most natural one. The quantile residuals from the Gamma GLM under

the Gamma distribution transformation are presented in Figure 5.2. In this figure we shows the

following plots:

� (top-left) The quantile residuals against the estimated logged mean values.

� (top-right) Correlations of the quantile residuals distant at lags ℓ = 1, . . . , 10, together with

95% confidence intervals for the null hypothesis that the correlations are zero. We randomly

shuffle the quantile residuals and we present the results for one sample of shuffled quantile

residuals. The results are similar in all random samples.

� (bottom-left) PIT reliability diagram for all quantile residuals, where we compare the empiri-

cal cumulative distribution function of the quantile residuals against the uniform distribution

(the uniform distribution represents the perfect estimation of the moments and the distribu-

tion); see Appendix B in Gneiting–Resin (2021) for a discussion of PIT reliability diagrams.

� (bottom-right) PIT reliability diagrams for quantile residuals grouped into four blocks based

on quantiles of the estimated mean values.

From Figure 5.2 we can conclude that the quantile residuals are independent but they are not

identically (and uniformly) distributed. Based on Figure 5.2 we can deduce that the Gamma GLM
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Figure 5.2: Quantile residuals from the Gamma GLM; (top-left) the darker the color, the larger
the density of the observations with particular means.

fits poorly to the observations with small estimated means and large estimated means (below the

25th percentile and above the 75th percentile of the estimated means), since for these observations

the assumption of common (uniform) distribution of the quantile residuals fails (bottom-right) – a

conclusion which agrees with Figure 2.2 based on the ground truth.

We proceed with our (imperfect) quantile residuals and perform Steps 3 and 4 of the above

algorithm. We consider 1,000 bootstrap samples. From these bootstrap samples we compute the

bootstrap distribution of the miscalibration statistics, see (5.4), together with its 95%-quantile for a

5% significance level of the confidence band in the T-reliability diagram. As strictly consistent scor-

ing function in (5.2)-(5.3) to measure the miscalibration term MCBS(Y , µ̂) of the mean estimator,

we use a weighted gamma deviance loss function given by

L(mi, Yi) = 2wi

(
− log(Yi/mi) + (Yi −mi)/mi

)
, (5.6)

where we set wi = V̂ (xi)/
(
µ̂(xi)

)2
based on our initial estimates; this is a dispersion estimate in

the Gamma GLM using the isotonic regression estimate V̂ (xi) of Step 1 of the algorithm. These

weights are kept fixed in the bootstrap simulations, i.e., we only recalibrate
(
µ̂(xi)

)n
i=1

based on
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the boostrap sample
(
Y ∗
i , µ̂(xi)

)n
i=1

. In Section 4 we have concluded that our observations do not

have a constant dispersion coefficient, that is why we consider a weighted gamma deviance loss

function in (5.6).
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Figure 5.3: (left) T-reliability diagram together with the 95% confidence band for mean estimates
from the Gamma GLM, and (right) distribution of the miscalibration statistics, together with the
observed value and the critical value at signficance level of 5% – the variance function is estimated
with an isotonic regression. T-reliability diagram presents logged mean estimates.

We plot the T-reliability diagram, and we first study it without interpreting the bootstrap

results, see Figure 5.3 (left). We plot the T-reliability diagram rotated by 45◦: the x-axis gives

the logged estimated means log(µ̂(xi)), and the y-axis presents the differences between the auto-

calibrated mean estimates and their original versions on the logarithmic scale: log(µ̂rc(xi)) −
log(µ̂(xi)). We expect that the mean estimates from the Gamma GLM are not auto-calibrated,

which is verified by this figure. The Gamma GLM seems to over-estimate the true means of policy-

holders with small expected claims, and under-estimate the true means of policyholders with large

expected claims. This statement agrees with the conclusions derived above based on the quantile

residuals. In practice, such a misesimation leads to a “wrong” premium, which in turn may imply

adverse selection and other frictions of the insurance market. We now add the bootstrap results

to our analysis in Figure 5.3. The 95% confidence band for the T-reliability diagram is added in

orange color on the left hand side of Figure 5.3, and the 5% p-value of the miscalibration test

is shown on the right hand side of Figure 5.3. This confirms our guess on miscalibration of the

mean estimates from the Gamma GLM. That is, we clearly reject the null hypothesis H0 of having

auto-calibration in the Gamma GLM. We should keep in mind that the quantile residuals used for

the bootstrap do not have a perfect structure, hence, these results from the bootstrap should be

interpreted with some caution. We could also bootstrap from a subset of the quantile residuals

which contains the quantile residuals for the observations with the estimated mean values between

the 25th and the 75th percentile of the estimated means, since these quantile residuals are i.i.d. and

uniformly distributed, see Figure 5.2. We applied this sampling scheme and we got very similar

results.

Summing up, the diagnostic tools and the techniques confirm that the initial Gamma GLM can

be improved in many ways, and these tools should also be useful to analyze improved versions of
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this Gamma GLM.

6 Example 3: Quasi-likelihood estimation of mean values with

non-parametric variance estimation

Motivated by Theorem 4 of Gourieroux et al. (1984), we now iterate this procedure to receive

better (best asymptotically normal) models. We propose the following algorithm, which applies

quasi-likelihood estimation of the mean values together with a non-parametric estimation of the

variance function.

Quasi-likelihood with Non-Parametric Variance Estimation

� Step 1: We estimate the expected value of the response with a classical GLM with link

function g and variance function V GLM implied by the selected GLM. This provides an initial

parameter estimate θ̂
0

and the estimated mean values
(
µ̂0(xi)

)n
i=1

, with µ̂0(xi) = g−1
(
x⊤
i θ̂

0)
for all instances 1 ≤ i ≤ n.

� Step 2: We estimate the variance of the response using the crude estimator

v̂0i =

(
Yi − µ̂0(xi)

)2
1 − h0i

,

where (h0i )
n
i=1 denote the hat values of the GLM fitted at the initial step.

� Step 3: We estimate the variance function of the response based on the observations(
v̂0i , µ̂

0(xi)
)n
i=1

. We use an isotonic regression assuming that the true variance function

V (µ(x)) is monotonically increasing in µ(x). This step provides us with an estimate of

the variance function µ 7→ V̂ 0(µ) and the variances V̂ 0(µ̂0(xi)) for all instances 1 ≤ i ≤ n.

This step is identical to Step 1 of the algorithm presented in Section 5.

� Step 4: We iterate for k = 1 to K:

(i) We estimate the expected value of the response with a GLM with link function g using

the quasi-likelihood method. In the deviance loss function (1.3) we use the estimated

variance function µ 7→ V̂ k−1(µ) as the variance function of the EDF family.

(ii) The regression function for the above Quasi GLM is estimated with the iterative

reweighed least squares (IRLS) algorithm. In inner steps kℓ = 1, . . . ,M of step k, the

auxiliary response is given by

Y kℓ
i = g

(
µkℓ−1(xi)

)
+ g′

(
µkℓ−1(xi)

)(
Yi − µkℓ−1(xi)

)
,

the expected value of the auxiliary response and the regression function are given by

g
(
µkℓ−1(xi)

)
= x⊤

i θ̂
kℓ
,
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with the parameter estimate θ̂
kℓ

to be found in step kℓ, and the weights are given by

wkℓ
i =

(
V̂ k−1(µ̂kℓ−1(xi))

(
g′(µ̂kℓ−1(xi))

)2)−1
. (6.1)

We initialize with µ̂k0(xi) = µ̂k−1(xi) for all instances 1 ≤ i ≤ n.

(iii) We get new estimates of θ̂
k

= θ̂
kM

and
(
µ̂k(xi)

)n
i=1

with µ̂k(xi) = g−1
(
x⊤
i θ̂

k)
for

all instances 1 ≤ i ≤ n.

(iv) We re-estimate the variance of the response using the crude estimator:

v̂ki =

(
Yi − µ̂k(xi)

)2
1 − hki

. (6.2)

(v) We re-estimate the variance function of the response based on the observations(
v̂ki , µ̂

k(xi)
)n
i=1

using an isotonic regression and assuming monotonicity in the mean

estimates. We get new estimates of µ 7→ V̂ k(µ) and V̂ k(µ̂k(xi)) for all instances 1 ≤ i ≤
n.

We use K = 25 and M = 10 – this choice guarantees the convergence of the algorithm, but

slightly lower values also lead to similar estimates. First, we present the final estimate of the vari-

ance function of the response, see Figure 6.1. We estimate the variance function non-parametrically

with an isotonic regression as outlined in the above algorithm, and we complement this estimate

with an estimate received by a local regression; see Loader (1999) for local regression. We compare

our final results with the true variance function in Figure 6.1. The isotonic regression gives very

accurate results, slightly better than the local regression. We point out that the estimate with

the local regression requires fine–tuning the degree of the polynomial, the type of the kernel and

the bandwidth. At the same time, the isotonic regression estimates do not require any selection of

hyperparameters, which is a great advantage of this non-parametric method. We fit a local regres-

sion with the locfit function in R with degree equal to zero, rectangular kernel and smoothing

parameter (nearest neighbor fraction) α = 0.05 (we only consider the degree of the local polyno-

mial equal to zero since local regressions with quadratic or cubic spline do not locally satisfy the

positivity constraint, hence it was difficult to use them to model the variance function without

manual intervention). In the sequel, we only continue with the variance estimate from the isotonic

regression. Figure 6.1 shows that we have managed to estimate the variance function very well,

except in the far right tail.

Next, we validate the quantile residuals from the Quasi GLM, see Figure 6.2. Compared to

Figure 5.2, the quantile residuals have a much better structure now due to improved estimations of

both the mean and the variance of the responses. However, we still observe a sign of misestimation

for some observations with the largest estimated mean values (with log means above 10.6, which is

the 75% percentile among the estimated mean values; see (bottom-right) of Figure 6.2). We remark

that the quantile residuals would not have a better structure if we applied the PIT transformation

with lognormal distributions, thus, the problem of non-identical distributions indicated in the

quantile residuals is caused by a misestimation of the means and the variances of the responses in

the upper tail. Below, we reveal that the misestimation of means is minor.
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Figure 6.1: Logged variance function estimated with an isotonic regression and a local regression
(kernel smoother) based on means estimated with the Quasi GLM for a range of logged mean
values.

In Figure 6.3 (left), we present the T-reliability diagram for the mean estimates from the Quasi

GLM, together with the 95% bootstrap confidence band. Figure 6.3 (right) shows the bootstrap

distribution of the miscalibration statistics calculated with a weighted gamma deviance function,

together with its 5% p-value and the observed miscalibration statistics. We implemented the

bootstrap as in the previous section. The results show that the miscalibration observed for the

Gamma GLM vanishes by this iteration for most estimated mean values, and the Quasi GLM

does not have a bias (the mean estimates from the Quasi GLM are auto-calibrated, i.e., H0 is not

rejected). The only miscalibration of the mean values is potentially observed for the observations

with the largest estimated means. From the analysis of the quantile residuals, we may not fully

trust the bootstrap results for the observations with estimated log means above 10.6, but we are

confident about the bootstrap results for the observations with estimated log means below 10.6. To

validate the bootstrap results with a different approach, we could also bootstrap from a subset of

the quantile residuals which contains the quantile residuals for the observations with estimated log

means below 10.6, as discussed in the previous section. The conclusion concerning miscalibration

of the mean estimator is the same in this modified approach.

Finally, the mean estimates from the Quasi GLM are compared to the true mean values in

Figure 6.4. We observe that the mean estimates from the Quasi GLM match much closer the

true mean values, compared to the mean estimates from the classical Gamma GLM, see Figure

2.2. This verifies that the estimation iteration with a properly estimated variance leads to a major

improvement in accuracy. In this Quasi GLM approach, we get estimation errors of order +1% and

−2%, this is substantially smaller than for the Gamma GLM in Figure 2.2. We conclude that on

a finite sample an (approximately) correct variance can significantly improve mean estimation.

We now switch for a moment to the synthetic Data Set 2. The theory of quasi-likelihood

methods says that when the sample size increases, we may misspecify the true variance function,

but asymptotically the mean estimates still converge to the true means. This is because the deviance

loss functions are strictly consistent for mean estimation, see Gneiting (2011) and Gourieroux et

al. (1984). In Figure 6.5 we present the estimation errors for the Data Set 2 with an increased
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Figure 6.2: Quantile residuals from the Quasi GLM; (top-left) the darker the color, the larger the
density of the observations with particular means.

sample size of n = 100, 000 compared to Figure 2.2 and 6.4. The classical Gamma GLM leads to

estimation errors of order +5% and −10%, this is substantially smaller than in Figure 2.2 (right)

for sample size n = 20, 000. If we apply the iterated quasi-likelihood method with the variances

estimated with an isotonic regression we get an almost perfect fit with estimation errors of order

+0.5% and −0.5%, see Figure 6.5 (right).

7 Example 4: MLE of mean with lognormal distributions

In the synthetic Data Set 1, the observations were generated by lognormal distributions. So far

we have used a Gamma GLM and a quasi-likelihood approach, under the specification of the first

two moments of the distribution, to estimate the mean values of these lognormal observations.

Given the information about the true distribution, it is natural to perform MLE under the true

distribution to gain full efficiency of the mean estimator. MLE for mean estimation is generally

difficult under lognormal distributions since we have to simultaneously, and correctly, estimate the

mean and the variance of the response on the log scale (MLE is performed on logged responses and

an exponential transformation is applied to the mean and variance estimates on the log scale to get
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Figure 6.3: (left) T-reliability diagram together with the 95% confidence band for mean estimates
from the Quasi GLM, and (right) distribution of the miscalibration statistics, together with the
observed value and the critical value at signficance level 5% – the variance function estimated with
an isotonic regression. T-reliability diagram presents logged mean estimates.
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Figure 6.4: Estimated means from the Quasi GLM against true means for all instances; the darker
the color, the larger the density of the observations with particular means; remark that the y-scale
of the plot on the right hand side differs from the one in Figure 2.2.

the mean estimate on the original scale). In contrast to the quasi-likelihood method, if we misspecify

the variance function, then the MLE for the mean value is no longer strongly consistent. Hence,

variance estimation plays a greater role in MLE of lognormal models than in the quasi-likelihood

estimation approach of the mean values for lognormally distributed responses.

In this section we use the same parametrization of the response as in a GLM framework, i.e.,

we assume that

E[Yi|xi] = g−1
(
x⊤
i θ
)

= g−1
(
η(xi,θ)

)
and Var[Yi|xi] = ϕV

(
E[Yi|xi]

)
, (7.1)

for all instances 1 ≤ i ≤ n. In particular, under this parametrization we can directly compare our
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Figure 6.5: Estimated means from the Gamma GLM and the Quasi GLM against true means for
all instances in the Data Set 2 with sample size n = 100, 000; the darker the color, the larger the
density of the observations with particular means; note that the scales of the y-axes differ in the
two graphs.

mean estimation results to the ones of the quasi-likelihood aproach, since the models are estimated

under the same assumptions concerning the two moments of the response, which agree with the

assumptions used to generate Data Sets 1 and 2. A different parametrization of the lognormal

distribution, derived under different assumptions concerning the two moments of the response, is

discussed in the next section.

Since we want to apply MLE under an (a priori known) lognormal distribution assumption of the

response, we can switch to normally distributed responses. If Y |x has a lognormal distribution with

mean E[Y |x] and variance Var[Y |x], then Z = log(Y ), conditional on x, is normally distributed

with mean and variance

E[Z|x] = log(E[Y |x]) − 1

2
Var[Z|x] and Var[Z|x] = log

(
1 +

Var[Y |x](
E[Y |x]

)2
)
. (7.2)

The variable Z is the response on the log scale, E[Z|x] is the mean on the log scale and Var[Z|x]

is the variance on the log scale. We introduce an auxiliary response variable on the log scale

Z̃ = Z +
1

2
Var[Z|x], (7.3)

with the first two moments

g̃(E[Z̃|x]) := g
(
eE[Z̃|x]

)
= g
(
eE[Z|x]+ 1

2
Var[Z|x]

)
= g(µ(x,θ)) = x⊤θ = η(x,θ),

Var[Z̃|x] = log

(
1 +

Var[Y |x](
E[Y |x]

)2
)

= log

(
1 +

V (µ(x,θ))(
µ(x,θ)

)2
)

=: Ṽ
(
η(x,θ)

)
= Var[Z|x], (7.4)
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where Ṽ is a variance function of the response on the log scale seen as a function of the linear

predictor η. We remark that η is directly linked to the mean value of the response on the original

scale by (7.1) and differs from the mean value of the response on the log scale (7.2).

In particular, we choose the logarithmic link g(µ) = log(µ). Models with parametrization (7.1)

and logarithmic link are called log-linear models in the statistical literature, see, e.g., Chapter 6 in

McCullagh–Nelder (1983). This choice of g is made for our synthetic data sets, and it is further

discussed in the numerical examples, below. In this case, g̃ is the identity function and the expected

value of the auxiliary response Z̃ directly coincides with the linear predictor we want to estimate

for the mean value of Y . That is, we have

E[Z̃|x] = E[Z|x] +
1

2
Var[Z|x] = x⊤θ = η(x,θ). (7.5)

The variance function Ṽ becomes here a function of the logarithm of the mean value of the response

on the original scale.

There are three difficulties in the estimation procedure. First, the auxiliary response Z̃ is not

directly observable, but only Y and Z, respectively. Second, the variance of Z̃ is not known, and

from the previous discussions we know that the information about the variance is beneficial for the

estimation of the regression function for E[Z̃|x], from which we can next derive the main estimate of

E[Y |x] by an exponential transformation of E[Z̃|x]. Third, the definition of Z̃ involves the unknown

variance of Z̃. The simplest approach is to assume that Var[Zi|xi] is constant and independent

of xi for all instances 0 ≤ i ≤ n, hence Zi is homoskedastic, then Zi = Z̃i up to a constant and

we can fit a linear regression function with parameter β to (Zi,xi)
n
i=1 using least squares (MLE

on logged responses within a Gaussian linear model). The variance of the error term in the linear

homoskedastic regression model can then be estimated in a second step with the classical Pearson

dispersion estimator σ̂2. In this approach, we receive expected value of the response Y on the

original scale (after back-transformation)

Ê[Yi|xi] = ex
⊤
i β̂+ 1

2
σ̂2
, (7.6)

where β differs from θ only in the intercept by the variance of the Gaussian error term. The model

estimated with this approach (and the mean estimates derived by (7.6)) is called Linear Model

on log scale (LM on log scale) in the sequel, since we fit a homoskedastic linear model to logged

responses. This approach totally neglects the difficulties mentioned above – in general, it neglects

the variance function of Z and the property that Z = log(Y ) is possibly heteroskedastic, which

arises if the variance function V of the response Y is not quadratic.

In Figure 7.1 we observe that the LM on log scale leads to poor results. The T-reliability

diagram does not look convincing and the miscalibration test rejects the null hypothesis of having

an auto-calibrated mean model. Here, we apply a parametric bootstrap since in this section we use

the assumption that the response is lognormally distributed. The expected values of the responses

for the bootstrap are estimated by (7.6) and the variances of the responses, under the estimated

expected values, are estimated non-parametrically with an isotonic regression, as in Section 4. In

Figure 7.2 we also compare the mean estimates from the LM on log scale calculated with (7.6) with

the true mean values to verify the conclusion that the mean values are not properly estimated and
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Figure 7.1: (left) T-reliability diagram together with the 95% confidence band for mean estimates
from the LM on log scale, and (right) distribution of the miscalibration statistics, together with
the observed value and the critical value at signficance level 5% – the variance function estimated
with an isotonic regression. T-reliability diagram presents logged mean estimates.

0 10000 20000 30000 40000 50000 60000

50
00

15
00

0
25

00
0

35
00

0

Mean estimations

True mean

LM
 o

n 
lo

g 
sc

al
e

0 10000 20000 30000 40000 50000 60000

−
10

0
0

10
0

20
0

Relative error (in %) in mean estimations

True mean

LM
 o

n 
lo

g 
sc

al
e 

vs
 T

ru
e 

m
ea

n

Figure 7.2: Estimated means from the LM on log scale against true means for all instances; the
darker the color, the larger the density of the observations with particular means.

that we should account for heteroskedasticity.

From (7.4) we can see that the mean estimate of the response on the original scale E[Yi|xi] uses

the estimate of the regression function for the response on the log scale E[Z̃i|xi], which depends

on the variance estimate of the response on the log scale Var[Zi|xi], hence, we should take care of

a proper (best possible) estimation of the variance function of the response on the log scale to get

good predictors on the original scale. In the framework of parametrization (7.1), we propose the

following MLE algorithm for the mean values of lognormally distributed responses together with a

non-parametric estimation of the variance function.

Lognormal Linear Model with Non-Parametric Variance Estimation
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� Step 1: We estimate the linear predictor (the mean of the response Y |x transformed with

g) with a Gaussian GLM with link g̃ and unit weights based on the observations (Zi,xi)
n
i=1.

We get an initial estimate of the parameter θ̂
0
, the linear predictors

(
η̂0(xi)

)n
i=1

and the

estimated mean values
(
µ̂0(xi)

)n
i=1

, where η̂0(xi) = x⊤θ̂
0

and µ̂0(xi) = g−1
(
x⊤θ̂

0)
for all

instances 1 ≤ i ≤ n.

� Step 2: We estimate the variance of the response on the log scale using the crude estimator

̂̃v0i =

(
Zi − log

(
g−1(η̂0i )

))2
1 − h0i

,

where (h0i )
n
i=1 denote the hat values of the Gaussian GLM fitted in the initial step.

� Step 3: We estimate the variance function Ṽ of the response on the log scale based on the

observations
(̂̃v0i , η̂0(xi)

)n
i=1

. We use an isotonic regression assuming that the true variance

function Ṽ (η(x)) is monotonically increasing in η(x). This step gives us an estimate of the

variance function η 7→ ̂̃
V

0

(η) and the variances
̂̃
V

0

(η̂0(xi)) for all instances 1 ≤ i ≤ n.

� Step 4: We iterate for k = 1 to K:

(i) We estimate the linear predictor (the mean of the response Y |x transformed with g)

with a Gaussian GLM with link g̃ and the weights
(̂̃
V

k−1(
µ̂k−1(xi)

))−1
based on the

observations
(
Zi + 1

2
̂̃
V

k−1(
η̂k−1(xi)

)
,xi

)n
i=1

.

(ii) We get new estimates of θ̂
k
,
(
η̂k(xi)

)n
i=1

and
(
µ̂k(xi)

)n
i=1

, where η̂k(xi) = x⊤θ̂
k

and

µ̂k(xi) = g−1
(
x⊤θ̂

k)
for all instances 1 ≤ i ≤ n.

(iii) We re-estimate the variance of the response on the log scale using the crude esti-

mator

̂̃vki =

(
Zi + 1

2
̂̃
V

k−1(
η̂k−1(xi)

)
− log

(
g−1
(
η̂k(xi)

)))2
1 − hki

.

(iv) We re-estimate the variance function Ṽ of the response on the log scale based on

the observations
(˜̂vki , η̂k(xi)

)n
i=1

using an isotonic regression. We get new estimates of

η 7→ ̂̃
V

k

(η) and
̂̃
V

k

(η̂k(xi)) for all instances 1 ≤ i ≤ n.

The model fitted with the above algorithm to the Data Set 1 is called Log-Linear Heteroskedastic

Model (Log-LHM), since we assume a log-linear structure for the mean value of the response (hence

it is a log-linear model) and we model the variance of the response (we additionally allow for

heteroskedasticity of the response). We use K = 15. The results of our estimation are presented

in Figures 7.3-7.6. They show that we manage to estimate the mean values correctly with this

algorithm. As in the previous section, we estimate the variance function (of the response on the log
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Figure 7.3: Variance function of the response on the log scale estimated with an isotonic regression
and a local regression (kernel smoother) based on means estimated with the Log-LHM for different
ranges of logged mean values.
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Figure 7.6: Estimated means from the Log-LHM against true means for all instances; the darker
the color, the larger the density of the observations with particular means; remark that the y-scale
of the plot on the right hand side differs from the one in Figures 6.4 and 7.2.

scale) both with a local regression and an isotonic regression, see Figure 7.3, and we compare the

estimation results to the true variance function. Again, the isotonic regression, applied without any

hyperparameter fine-tuning, provides a better fit than the local regression, which requires optimal

selection of hyperparameters (we choose a local regression with degree equal to zero, rectangular

kernel and smoothing parameter α = 0.06). We point out that by applying this estimation algorithm

with non-parametric estimation of the variance, we are now able to fit correctly the variance function

also for the observations with the largest mean values, this was not possible in the quasi-likelihood

approach of the previous section.

As a part of the model diagnostics, we study the quantile residuals from the Log-LHM ap-

proach. The quantile residuals are defined using the lognormal distribution with the first two fitted
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moments. Figure 7.4 shows that the structure of the quantile residuals looks perfect, which, in

particular, confirms that the Log-LHM provides appropriate mean and variance estimates. Using

the parametric bootstrap with lognormal distributions with the first two fitted moments, we obtain

the T-reliability diagram and its 95% confidence band, as well as the miscalibration test, see Figure

7.5. From this figure we conclude that we cannot reject the null hypothesis of having an auto-

calibrated model, hence, everything looks fine, here. Finally, in Figure 7.6 we compare the mean

estimates on the original scale from the Log-LHM with the true mean values. This figure shows

that we arrive at precise estimates of the expected values of the responses. Comparing Figure 7.6

with Figure 6.4, we can also conclude that the approach from this section gives us slightly better

estimates of the mean values, closer to the true mean values in terms of relative errors, than the

approach from the previous section. This is expected since in this section we perform the MLE of

the mean values, in which the whole distribution of the response is correctly specified, whereas in

the previous section we apply the quasi-likelihood approach, in which only the first two moments

are correctly specified.

8 Example 5: MLE estimation on logged data and non-parametric

back-transformation

We continue with MLE for lognormal distributions. In actuarial applications, there is a common

practice to logarithmize the observations before the modeling process is started. Taking the loga-

rithmic transformation, heavy-tailed claims become more light-tailed and more symmetric, and one

can apply a linear regression with Gaussian errors (under the assumption that the responses come

from lognormal distributions), without the drawback of over-fitting to large observations. Once the

response is logarithmically transformed, a regression function is specified for the expected value of

the response on the log scale. This approach uses a different assumption concerning the first two

moments of lognormally distributed responses than the assumption investigated in the previous

section.

In this section we use a different parametrization of the lognormal responses compared to

Section 7. We now assume that Y |x has a lognormal distribution with mean parameter λ(x) ∈ R
and variance parameter σ2(x) > 0 on the log scale, i.e., the response has the first two moments

E[Y |x] = exp

{
λ(x) +

σ2(x)

2

}
and Var[Y |x] = E[Y |x]2

(
eσ

2(x) − 1
)
. (8.1)

This is equivalent to saying that Z = log(Y )|x has a Gaussian distribution with mean λ(x) and

variance σ2(x), that is, the response on the log scale has the first two moments

E[Z|x] = λ(x) and Var[Z|x] = σ2(x) = V(λ(x)). (8.2)

The difference between (8.2) and (7.1) is that in (8.2) the regression function is specified for the

expected value of the logarithmically transformed response (λ(x) is linked to a linear predictor

η(x)), whereas in (7.1) the regression function is specified for the expected value of the response

on the original scale (µ(x) is linked to a linear predictor η(x)). By the remark after (7.4), the

variance functions in the two parametrizations are functions of different objects. Depending on the
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application, one of the two parametrizations (7.1) or (8.2) may be suitable. As far as the mean

value of the response on the original scale is concerned, parametrization (8.1) uses the variance on

the log scale in the definition of the mean, whereas log-linear models with parametrization (7.1)

specify the mean value independently of the variance function. On the log scale, (8.2) leads to

the mean function independent of the variance function, whereas (7.4) introduces a dependence of

the mean value of the response on its variance. Under both parametrizations, we require a precise

estimation of the mean and the variance of the response on the log scale to derive the mean estimate

of the response on the original scale.

The algorithm presented in Section 7 can easily be adapted to handle the parametrization

from this section. We just set Z̃ = Z. In fact, here we just follow the ideas of Carroll (1982),

Müller–Stadtmüller (1987) and Davidian–Carroll (2012) on the log scale. Once we get estimates of(
λ̂(xi)

)n
i=1

and V̂(λ̂
(
xi)
)

for all instances 1 ≤ i ≤ n on the log scale, we can predict the responses

on the original scale with

Ê[Yi|xi] = exp

{
λ̂(xi) +

V̂
(
λ̂(xi)

)
2

}
. (8.3)

Prediction (8.3) uses a parametric model for the mean parameter λ(x) and a non-parametric

model for the variance parameter σ2(x). If this non-parametric estimator comes from an isotonic

regression w.r.t. the mean parameter λ(x), we can also explore a different back-transformation of

the estimates from the log scale to the original scale. Namely, under the assumption that λ 7→ V(λ)

is monotonically increasing, which allows us to fit an isotonic regression to model the variance

function V on the log scale, λ(x) and exp{λ(x) + V(λ(x))/2} have the same ordering, and we can

directly apply an isotonic regression to the sample
(
Yi, λ̂(xi)

)n
i=1

providing us with a non-parametric

mean estimate for Yi, given xi.
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Figure 8.1: (left) Logged estimated means from the LHM on log scale against logged true means,
and (right) estimated means on the log scale from the LHM on log scale against true means on
the log scale for all instances; the darker the color, the larger the density of the observations with
particular means.

We investigate the synthetic Data Set 3. For pedagogical reasons, we prefer not to use Data Set

1 since the first moment of the responses in this data set does not fulfill the assumption (8.2) with
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a simple parametric function λ(x). Hence, we would fail to validate our mean estimation results,

achieved with linear regression functions, against the true mean values. For this reason, we create

a new synthetic data set with observations which satisfy (8.2). As discussed in Section 2, we set

λ(xi) = log(µ(xi)) = η(xi), where
(
µ(xi)

)n
i=1

denote the true mean values of the claim sizes from

the synthetic Data Set 1. Hence, the assumed true mean function on the log scale λ(x) is now a

linear function of regressors x (the same function as the logged mean function used in the Data Set

1 and 2). The true variances of the claim sizes on the log scale are defined based on the variance

function (2.1) with the following transformation

V(λ) = ϕ log

(
1 +

V
(
eλ
)(

eλ
)2
)
.
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Figure 8.2: Variance function of the response on the log scale estimated with an isotonic regression
based on means estimated with the LHM on log scale for different ranges of mean values on the
log scale.

The estimation results are presented in Figures 8.1-8.4. We only need K = 5, since this is the

simplest of all three estimation problems from this paper. To avoid misunderstanding, let us point

out that by the mean value (estimate) on the log scale we mean λ(xi) and λ̂(xi), respectively,

whereas by the logged mean value (estimate) we mean log(E[Y |xi]) and log(Ê[Y |xi]), respectively.

Clearly, log(E[Y |xi]) ̸= λ(xi). We fit so-called Linear Heteroskedastic Model on log scale (LHM on

log scale), since we fit a heteroskedastic linear model to logged responses. If the Gaussian errors

on the log scale would have constant variance, then our LHM on log scale would reduce to the LM

on log scale fitted as a naive model in Section 7. The mean and variance estimates on the log scale

from the LHM on log scale are transformed to the mean estimates on the original scale by (8.3).

We can observe that our approach works very well on the log scale and on the original scale. Of

course, the estimates of the mean values of the responses on the original scale have a poorer fit

than in the previous sections since under parametrization (8.1) the mean value on the original scale

depends on the variance of the log scale, which is approximated here with a step function from

an isotonic regression, and this approximation is crude in the tail. In Figures 8.3 we present the

results of applying an isotonic regression to
(
Yi, λ̂(xi)

)n
i=1

. Finally, in Figure 8.4 we confirm that
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Figure 8.3: Logged non-parametric mean function estimated with an isotonic regression based on
mean estimates from the LHM on log scale as a function of the ranks for the mean estimates on
the log scale.

8 9 10 11 12 13 14

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

T−reliability diagram − Log mean values

LHM on log scale

A
ut

o−
ca

lib
ra

te
d 

LH
M

 o
n 

lo
g 

sc
al

e

0.010 0.015 0.020

0
50

10
0

15
0

20
0

25
0

30
0

Empirical miscalibration under H_0

MSC statistics

D
en

si
ty

Observed

95% quantile

Figure 8.4: (left) T-reliability diagram together with the 95% confidence band for the fully non-
parametric mean estimates from the LHM on log scale, and (rhs) distribution of the miscalibration
statistics together with the observed value and the critical value at significance level 5% – the
variance function and mean function estimated with isotonic regressions. T-reliability diagram
presents logged mean estimates.

our fully non-parametric estimates of the mean responses on the original scale are auto-calibrated

(we implemented the parametric bootstrap as in the previous section).

9 Conclusions

In this paper we have emphasized the significance and benefits of an accurate variance estimation

for mean estimation in regression models. We have proposed an istotonic regression as a tool for

non-parametric variance estimation as a monotonic function of the mean. Using five examples, we

have demonstrated how to incorporate and validate the estimation of the variance function into
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the process of mean estimation using a quasi-likelihood method for distributions from EDF and a

MLE for lognormal distributions. We believe that our results are of big importance in actuarial

practice. In the paper, we focus on mean estimation within GLMs but our approach with joint

mean-variance estimation also applies to GAMs, regression trees, neural networks or any other

more complex regression framework.
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Krüger, F., Ziegel, J.F. (2021). Generic conditions for forecast dominance. Journal of Business & Economics

Statistics 39(4), 972-983.

Kruskal, J.B. (1964). Nonmetric multidimensional scaling. Psychometrica 29, 115-129.

Leeuw, de J., Hornik, K., Mair, P. (2009). Isotone optimization in R: pool-adjacent-violators algorithm

(PAVA) and active set methods. Journal of Statistical Software 32(5), 1-24.

Lindholm, M., Lindskog, F., Palmquist, J. (2023). Local bias adjustment, duration-weighted probabilities,

and automatic construction of tariff cells. Scandinavian Actuarial Journal, in press.

Loader, C. (1999). Local Regression and Likelihood. Springer.

McCullagh, P. (1983). Quasi-likelihood functions Annals of Statistics 11(1), 59-67.

McCullagh, P., Nelder, J.A. (1983). Generalized Linear Models. Chapman and Hall.

Miles, R.E. (1959). The complete amalgamation into blocks, by weighted means, of a finite set of real

numbers. Biometrika 46, 317-327.

Murphy, A.H. (1973). A new vector partition of the probability score. Journal of Applied Meteorology 12(4),

595-600.

Müller, H.G., Stadtmüller, U. (1987). Estimation of heteroskedasticity in regression analysis. The Annals of

Statistics 15(2), 610-625.

Nelder, J.A., Pregibon, D. (1987). An extended quasi-likelihood function. Biometrika 74(2), 221-232.

Pohle, M.-O. (2020). The Murphy decomposition and the calibration-resolution principle: A new perspective

on forecast evaluation. arXiv:2005.01835.

Politis, D.N. (2015). Model-Free Prediction and Regression. Springer.

Ruppert, D., Wand, M.P., Holst, U., Hosjer, O. (2012). Local polynomial variance function estimation.

Technometrics 39(3), 262-273.

Savage, L.J. (1971). Elicitable of personal probabilities and expectations. Journal of the American Statistical

Association 66/336, 783-810.

Smyth, G.K., Verbyla, A.P. (1999). Double generalized linear models: approximate REML and diagnostics.

In: Proceedings of the 14th International Workshop on Statistical Modelling. Friedl, H., Berghold, A.,

Kauermann, G. (Eds.). Technical University, Graz, Austria, 66-80.

32



Tweedie, M.C.K. (1984). An index which distinguishes between some important exponential families. In:

Statistics: Applications and New Directions. Ghosh, J.K., Roy, J. (Eds.). Proceeding of the Indian Statis-

tical Golden Jubilee International Conference, Indian Statistical Institute, Calcutta, 579-604.

Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gaussďż˝Newton
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