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Abstract

In this paper we deal with pricing and hedging for a payment process. We

investigate a Black-Scholes financial market with stochastic coefficients and a

stream of liabilities with claims occurring at random times, continuously over

the duration of the contract and at the terminal time. The random times of

the claims are generated by a random measure with a stochastic intensity of

jumps. The claims are written on the asset traded in the financial market

and on the non-tradeable source of risk driven by the random measure. Our

framework allows us to consider very general streams of liabilities which may

arise in financial and insurance applications. We solve the exponential utility

optimization problem for our payment process and we derive the indifference

price and hedging strategy. We apply backward stochastic differential equa-

tions.

MSC: 91B28,91B30,93E20.

Keywords: Black-Scholes model, random measure, backward stochastic dif-

ferential equation, exponential utility, insurance and financial claims.
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1 Introduction

Optimal investment problems have been extensively studied in the literature since

Harry Markowitz introduced the problem of mean-variance portfolio selection, see

Markowitz (1952), and Robert Merton found the optimal investment portfolio for

an agent making decisions based on a utility function, see Merton (1969). In this

paper we deal with an investment problem for an investor who faces a stream of

liabilities and makes decisions based on his/her exponential utility function. The

exponential indifference price and hedging strategy for the payment process is next

derived from the solution to the utility optimization problem.

We consider the Black-Scholes financial market with a bank account and a stock.

We assume zero interest rate on the bank account, and random drift and volatility

in the dynamics of the risky stock. This framework allows us to model heavy-tailed

asset returns and stochastic volatility. We investigate a stream of liabilities over a

finite time horizon modelled by a payment process with claims occurring at random

times, continuously over the duration of the contract and at the terminal time. The

random times of the claims are generated by a random measure with a stochastic

intensity of jumps. The claims are written on the asset traded in the financial mar-

ket and on the non-tradeable source of risk driven by the random measure. The

form of our payment process is motivated by Dahl et al (2008) and Dahl and Møller

(2006) who deal with a life insurance payment process under a stochastic mortality

intensity. By allowing a stochastic jump intensity we can take into account both

systematic and unsystematic claim intensity risk. We remark that by the systematic

claim intensity risk we mean unpredictable changes in the intensity of claims and

by the unsystematic claim intensity risk we understand randomness in the occur-

rence of claims. We recall that the systematic risk is very important in finance and

insurance applications in which we should model a default intensity or a surrender

intensity as a stochastic process related to the financial market.

In the financial mathematics literature the problems of exponential utility op-

timization and indifference pricing and hedging of contingent liabilities are well

studied. For some recent results we refer to Becherer (2006), Bielecki et al (2004),
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Frei and Schweizer (2009), Hu et al (2005), Mania and Schweizer (2005) and ref-

erences therein. The authors consider very general financial models with claims

paid at the terminal time and derive theoretical existence results. Interestingly, in

insurance mathematics an emphasis is put on indifference pricing and hedging of

payment processes and claims paid over the duration of the contract. Less general

but more explicit and applicable results are derived in the actuarial literature. We

refer to Liang et al (2011), Perera (2010), Wang (2007) and Wang et al (2007) where

the authors investigate the exponential utility optimization of the terminal wealth

of an insurer who covers claims generated by a compound Poisson process over the

finite time horizon. We also point out the work by Ludkovsky and Young (2008)

where the exponential indifference pricing and hedging problem is solved for a life

insurer with a finite investment horizon who covers claims arising under life annuity

and endowment contracts. The goal of this paper is to solve the exponential utility

optimization and indifference pricing and hedging problems for a general payment

process and derive an explicit representation of the solution. We believe that there

is a need to obtain prices and hedging strategies for payment processes which are

more sophisticated than a compound Poisson process. For example, the systematic

claim intensity risk should be additionally included on the liability side.

This paper completes and generalizes the results from Becherer (2006), Bielecki

et al (2004) and Delong (2010). In Becherer (2006) and Bielecki et al (2004) the

exponential utility optimization and indifference pricing and hedging problems for

a terminal liability are solved, whereas in Delong (2010) the quadratic optimiza-

tion and quadratic hedging problems for a payment process are solved. Here, we

solve the exponential utility optimization and indifference pricing and hedging prob-

lems for the payment process. In order to solve our problems we apply backward

stochastic differential equations (BSDEs) and we follow closely the works of Becherer

(2006) and Hu et al (2005). We adapt the results from Becherer (2006) into our

framework and make necessary reformulations and extensions in the proofs. As far

as mathematics is concerned, we derive the BSDEs which characterize the optimal

value function, the price and the investment strategy and we obtain the equivalent

martingale measure which should be used in valuation of the claims in our general
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model. From the point of view of applications, our modifications allow us to state

an explicit representation of the strategy which is of interest to an investor who aims

at pricing and hedging of payment processes. We believe that our extension is im-

portant as in many applications, especially in insurance, investors deal with stream

of liabilities contingent on traded and non-traded risks which should be priced and

hedged in a consistent way. Hence, the need for pricing and hedging results for gen-

eral payment processes arises and we fill the gap in this respect. In particular, this

is the first paper in the actuarial literature which provides an investment strategy

for the insurer in the case when a policyholder lapses the contract under a stochastic

intensity depending on the financial market.

This paper is structured as follows. In Section 2 we introduce the financial mar-

ket and the payment process. The utility optimization problem is solved in Section

3. Section 4 deals with the indifference pricing and hedging. The change of measure

technique for a Brownian motion and a random measure is recalled in the Appendix.

2 The financial market and the payment process

Let us consider a probability space (Ω,F ,P) with a filtration F = (Ft)0≤t≤T and

a finite time horizon T < ∞. We assume that F satisfies the usual hypotheses of

completeness (F0 contains all sets of P-measure zero) and right continuity (Ft =

Ft+).

We deal with the Black-Scholes financial model with stochastic coefficients. The

financial market consists of two tradeable instruments: a bank account and a stock.

The value of the bank account S0 := (S0(t), 0 ≤ t ≤ T ) is constant S0(t) = 1, 0 ≤

t ≤ T (we assume zero rate of interest) and the dynamics of the stock price S :=

(S(t), 0 ≤ t ≤ T ) is given by the stochastic differential equation

dS(t)

S(t)
= µ(t)dt+ σ(t)dW (t), S(0) = s0 > 0, (2.1)

where µ := (µ(t), 0 ≤ t ≤ T ) denotes the expected return on the stock, σ :=

(σ(t), 0 ≤ t ≤ T ) denotes the price volatility and W := (W (t), 0 ≤ t ≤ T ) is an

F -adapted Brownian motion. We assume that
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(A1) the processes µ, σ are F -predictable and they satisfy
∫ T

0

|µ(t)|dt <∞,

∫ T

0

|σ(t)|2dt <∞, σ(t) > 0, a.s. 0 ≤ t ≤ T,

∣

∣

∣

µ(t)

σ(t)

∣

∣

∣
≤ K, a.s., 0 ≤ t ≤ T.

Moreover, the processes are predictable with respect to the natural filtration

σ(W (s), 0 ≤ s ≤ t).

If µ, σ are constant we obtain the classical Black-Scholes model. Our financial model

with stochastic coefficients has a potential in taking into account economic factors,

like stochastic volatility. The zero rate of interest could be interpreted that we deal

with discounted economic quantities.

We introduce the payment process. We follow Delong (2010). Let L := (L(t), 0 ≤

t ≤ T ) denote an F -adapted step process process. With the process L we associate

the random measure

N(dt, dv) =
∑

s∈(0,T ]

1(s,△L(s))(dt, dv)1{△L(s)6=0}(s), (2.2)

with △L(s) = L(s)− L(s−), defined on Ω× B((0, T ])× B(R− {0}). For the Borel

set A the measure N((0, t], A) counts the number of jumps of L of the given height

A in the given period (0, t]. For details on random measures we refer to Chapter XI

in He et al (1992). We assume that

(A2) the random measure N has a unique compensator ϑ, defined on Ω×B((0, T ])×

B(R− {0}), of the form

ϑ(dt, dv) = Q(t, dv)η(t)dt,

where η : Ω × [0, T ] → [0,∞) is a predictable process; for a fixed (ω, t) ∈

Ω × (0, T ], Q(ω, t, .) is a probability measure on R − {0}, and, for a fixed

A ∈ B(R − {0}), Q(., ., A) : Ω × [0, T ] → [0, 1] is an F -predictable process.

The process η satisfies

η(t) ≤ K, η(t) ≥ 0, a.s. 0 ≤ t ≤ T.

The measure Q fulfills

Q(ω, t, dv) = z(ω, t, v)q(dv),
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with a density z bounded a.s. a.e. in (ω, t, v) and a probability measure q.

We set N({0},R − {0}) = N((0, T ], {0}) = ϑ((0, T ], {0}) = 0. The assumption

(A2) is useful in applications as η stands for the intensity of jumps of the process L

and Q gives the distribution of the jump’s height given that the jump occurs. The

boundedness of the density is the technical condition from Becherer (2006).

We deal with the stream of liabilities modelled by the payment process P :=

(P (t), 0 ≤ t ≤ T ) described by

P (t) =

∫ t

0

H(s)ds+

∫ t

0

∫

R

G(s, y)N(ds, dy) + F1t=T . (2.3)

The process P contains payments H which occur continuously during the term of

the contract; it contains claims G which occur at random times and the liability F

which is settled at the end of the contract, see Dahl and Møller (2006) and Dahl et

al (2008). We assume that

(A3) the processes H,G are F -predictable and the random variable F is FT -

measurable. The processes H,G and the random variable F are non-negative

and bounded a.s.,

From the representation (2.2) and the fact that the step process L has a finite

number of jumps in [0, T ] we obtain that

∫ t

0

∫

R

G(s, y)N(ds, dy) =
∑

s∈(0,t]

G(s,△L(s))1{△L(s)6=0}(s), 0 ≤ t ≤ T, (2.4)

and the stochastic integral is well-defined. We can conclude that the stochastic

integral with respect to the random measure N models claims occurring at the

times when the step process L jumps.

The payment process (2.3) is very general and may appear in various pricing and

hedging problems in financial and insurance mathematics. Notice that the claims

can depend (also in a pathwise sense) on different sources of uncertainty captured

by the filtration F . The liabilities H,G, F can depend on the tradeable source of

risk W and on the non-tradeable source of risk L. We give four examples.
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Example 1: A unit-linked life insurance. Choose

η(t) = (n− L(t−))λ(t), Q(t, {1}) = 1,

H(t) = h(t, S(t))(n− L(t−)), G(t, {1}) = g(t, S(t)),

F = f(T, S(T ))(n− L(T )). (2.5)

The payment process P models annuity, death and survival benefits from a portfolio

consisting of n insured persons whose lifetimes are independent and subject to a

deterministic mortality intensity λ, see Dahl and Møller (2006), Dahl et al (2008) and

Ludkovsky and Young (2008). We can investigate unit-linked products or variable

annuities which are worldwide sold insurance products with financial guarantees.

�

Example 2: An irrational lapse behavior in life insurance. As in Example 1

choose

η(t) = (n− L(t−))λ(t), Q(t, {1}) = 1,

H(t) = h(t, S(t))(n− L(t−)), G(t, {1}) = g(t, S(t)),

F = f(T, S(T ))(n− L(T )), (2.6)

but let λ be a stochastic intensity process adapted to the natural filtration σ(W (s), 0 ≤

s ≤ t). The payment process P models partial surrenders, total surrenders and sur-

vival benefits from a portfolio consisting of n insured persons whose surrenders are

conditionally independent and subject to the lapse intensity λ related to the finan-

cial market. It is now known that a lapse behaviour of an insured depends on the

financial market and such a dependence should be included in a pricing and hedging

model, see European Commision QIS5 (2010). In fact, an irrational lapse behaviour

triggered by the performance of the financial market is one of the most important

risks faced by life insurers. �

Example 3: A defaultable security. Under the same characteristics (2.6) the

payment process P could model claims from a portfolio of n defaultable securities.

In this framework defaults of securities are conditionally independent and subject

the default intensity λ related to the financial market. Defaultable securities are ex-
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tensively studied in the credit risk literature, see Bielecki et al (2004) and Blanchet-

Scalliet and Jeanblanc (2004). �

Example 4: A collective insurance and credit risk model. Choose

η(t) = λ, Q(t, dv) = q(dv),

H(t) = 0, G(t, v) = v, F = 0, (2.7)

where q is a probability measure on a bounded support. The payment process P is

a compound Poisson process and it models claims occurring at a constant intensity

λ with a severity q. A compound Poisson process is the key process investigated

in the collective insurance risk theory, see Liang et al (2011), Perera (2010), Wang

(2007), Wang et al (2007). More interestingly, we could take

η(t) = λ(t), Q(t, dv) = q(dv),

H(t) = 0, G(t, v) = g(t, S(t), v), F = 0, (2.8)

and we could deal with the claims that are contingent on the stock S and are gen-

erated by a Cox process with a stochastic claim intensity λ adapted to the natural

filtration σ(W (s), 0 ≤ s ≤ t). Two important examples where we can use (2.8)

concern weather (catastrophe) derivatives, see Ankirchner and Imkeller (2008), and

credit portfolio losses, see Gundlach and Lehrbass (2004). �

We finally assume that under (P,F) the weak property of predictable represen-

tation holds, see Chapter XII.2 in He et al. (1992), i.e.

(A4) every (P,F) local martingale M null at zero has a representation

M(t) =

∫ t

0

ψ(s)dW (s) +

∫ t

0

∫

R

κ(s, v)Ñ(ds, dv) 0 ≤ t ≤ T,

with F -predictable processes (ψ, κ) integrable, in the sense of Itô calculus,

with respect to the Brownian motionW and the compensated random measure

Ñ(dt, dv) = N(dt, dv)− ϑ(dt, dv).

If M is square integrable then the representation (A4) is unique and the stochastic

integrals are square integrable martingales. The assumption (A4) is usually satisfied
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in insurance and financial models, see Becherer (2006). In particular, it is possible

to construct the processes (W,L) and take the filtration F as the natural filtration

generated by these two driving processes to fulfill (A4), see Becherer (2006) and He

et al (1992).

3 Exponential utility optimization

First, we study exponential utility optimization of the terminal wealth.

The goal is to solve the following optimization problem

sup
π∈A

E
[

− e−γX(T )
]

, (3.1)

for an investor who chooses an investment strategy π, rebalances his/her positions

between the bank account S0 and the stock S and covers the stream of liabilities

P . The investor’s wealth process X := (X(t), 0 ≤ t ≤ T ) is given by the stochastic

differential equation

dX(t) = π(t)(µ(t)dt+ σ(t)dW (t))−H(t)dt−

∫

R

G(t, v)N(dt, dv)

−Fd1{t ≥ T}, X(0) = x,

where x denotes an initial capital. The investment strategy π can be chosen from a

class of admissible strategies A.

Definition 3.1. The class od admissible investment strategies A consists of F-

predictable processes π := (π(t), 0 ≤ t ≤ T ) such that

E

[

∫ T

0

|π(s)σ(s)|2ds
]

<∞,

the class
{

e−γXπ(τ), F-stopping times τ
}

is P− uniformly integrable.(3.2)

The class of strategies from Definition 1.1 usually arises when dealing with expo-

nential utility optimization and it excludes arbitrage strategies, see Becherer (2006)

and Hu et al (2005) for details.

Consider the backward stochastic differential equation

Y (t) = F +

∫ T

t

f(s)ds−

∫ T

t

Z(s)dW (s)−

∫ T

t

∫

R

U(s, v)Ñ(ds, dv), 0 ≤ t ≤ T,(3.3)
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where the generator f will be specified in the sequel. We use the BSDE (3.3) to

solve our optimization problem (3.1).

Consider the process V := (V (t), 0 ≤ t ≤ T ) with the dynamics

dV (t) = π(t)(µ(t)dt+ σ(t)dW (t))−H(t)dt−

∫

R

G(t, v)Ñ(dt, dv)

−

∫

R

G(t, v)Q(t, dv)η(t)dt, V (0) = x, (3.4)

and notice that our optimization criterion is equivalent to

E
[

− e−γX(T )
]

= E
[

− e−γ(V (T )−Y (T ))
]

.

The idea of solving (3.1), proposed in Hu et al (2005) and extended in Becherer

(2006), is to find a generator f of the BSDE (3.3), independent of π, such that the

process A := (A(t), 0 ≤ t ≤ T ) defined by

Aπ(t) = −e−γ(V π(t)−Y (t)), 0 ≤ t ≤ T,

is a martingale for some π∗ ∈ A and a supermartingale for all π ∈ A. If A is a

supermartingale for any π ∈ A, we obtain

E[Aπ(T )] = E
[

− e−γ(V π(T )−Y (T ))
]

≤ A(0),

and if A is a martingale for π∗ ∈ A, we conclude that

E[Aπ(T )] = E
[

− e−γ(V π(T )−Y (T ))
]

≤ A(0) = E
[

− e−γ(V π∗

(T )−Y (T ))
]

= E[Aπ∗

(T )],

and the optimality of π∗ follows.

We can find (f, π∗) in the following way. By substituting (3.3) and (3.4) we

obtain

−γ(V (t)− Y (t)) = −γ
(

X(0) +

∫ t

0

π(s)µ(s)ds+

∫ t

0

π(s)σ(s)dW (s)

−

∫ t

0

H(s)ds−

∫ t

0

∫

R

G(s, v)Q(s, dv)η(s)ds−

∫ t

0

∫

R

G(s, v)Ñ(ds, dv)

−Y (0) +

∫ t

0

f(s)ds−

∫ t

0

Z(s)dW (s)−

∫ t

0

∫

R

U(s, v)Ñ(ds, dv)
)

= −γ(X(0)− Y (0))− γ

∫ t

0

π(s)µ(s)ds− γ

∫ t

0

(

π(s)σ(s)− Z(s)
)

dW (s)

γ

∫ t

0

(

H(s) +

∫

R

G(s, v)Q(s, dv)η(s)
)

ds

+γ

∫ t

0

∫

R

(G(s, v) + U(s, v))Ñ(ds, dv)− γ

∫ t

0

f(s)ds, 0 ≤ t ≤ T.
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We define the processes MW := (MW (t), 0 ≤ t ≤ T ) and MN = (MN (t), 0 ≤ t ≤ T ):

MW (t) = e−γ
∫ t
0 (π(s)σ(s)−Z(s))dW (s)− 1

2
γ2

∫ t
0 (π(s)σ(s)−Z(s))2ds,

MN (t) = eγ
∫ t

0

∫
R
(G(s,v)+U(s,v))Ñ (ds,dv)

·e+
∫ t
0

∫
R
(γ(G(s,v)+U(s,v))−eγ(G(s,v)+U(s,v))+1)Q(s,dv)η(s)ds), (3.5)

the process D := (D(s), 0 ≤ s ≤ T ):

D(s) = −γπ(s)µ(s) +
1

2
γ2
(

π(s)σ(s)− Z(s)
)2

+γ
(

H(s) +

∫

R

G(s, v)Q(s, dv)η(s)
)

−

∫

R

(

γ(G(s, v) + U(s, v))− eγ(G(s,v)+U(s,v)) + 1
)

Q(s, dv)η(s)− γf(s),

and we obtain the following relation

A(t) = −e−γ(V (t)−Y (t))

= −MW (t)MN (t)e−γ(X(0)−Y (0))+
∫ t
0 D(s)ds, 0 ≤ t ≤ T. (3.6)

First, we choose a strategy π∗ to minimize

min
π

{

− γπ(s)µ(s) +
1

2
γ2(π(s)σ(s)− Z(s))2

}

.

and we get

π∗(s) =
1

σ(s)

(

Z(s) +
µ(s)

γσ(s)

)

, 0 ≤ s ≤ T. (3.7)

Second, we choose the generator f

f(s) = −π∗(s)µ(s)ds+
1

2
γ
(

π∗(s)σ(s)− Z(s)
)2
ds

+
(

H(s) +

∫

R

G(s, v)Q(s, dv)η(s)
)

ds

−
1

γ

∫

R

(

γ(G(s, v) + U(s, v))− eγ(G(s,v)+U(s,v)) + 1
)

Q(s, dv)η(s)

= −
µ2(s)

2γσ2(s)
−
µ(s)

σ(s)
Z(s) +H(s)

+

∫

R

(1

γ

(

eγ(G(s,v)+U(s,v)) − 1
)

− U(s, v)
)

Q(s, dv)η(s), 0 ≤ s ≤ T. .(3.8)

Notice that (f, π∗) have been chosen such that for any π we haveD(s) ≥ 0, 0 ≤ s ≤ T

and for π∗ we have D(s) = 0, 0 ≤ s ≤ T . Moreover, f is independent of π. The

above heuristic reasoning has to be made now more formal.
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Theorem 3.1. Assume that (A1)-(A4) hold. The strategy

π∗(t) =
1

σ(t)

(

Z(t) +
µ(t)

γσ(t)

)

, 0 ≤ t ≤ T, (3.9)

where (Y, Z, U) solve the backward stochastic differential equation

Y (t) = F +

∫ T

t

(

−
µ2(s)

2γσ2(s)
−
µ(s)

σ(s)
Z(s) +H(s)

+

∫

R

(1

γ

(

eγ(G(s,v)+U(s,v)) − 1
)

− U(s, v)
)

Q(s, dv)η(s)
)

ds

−

∫ T

t

Z(s)dW (s)−

∫ T

t

U(s, v)Ñ(ds, dv), 0 ≤ t ≤ T, (3.10)

is an admissible optimal investment strategy for the utility optimization problem

(3.1). The value function of the optimization problem (3.1) at time t = 0 equals

−e−γ(x−Y (0)).

Proof:

1. The existence and uniqueness of a solution to the BSDE (3.10).

We introduce the measure

dQF

dP

∣

∣

∣
Ft = e−

∫ t
0

µ(s)
σ(s)

dW (s)− 1
2

∫ t
0 |

µ(s)
σ(s)

|2ds, 0 ≤ t ≤ T. (3.11)

The measure QF is a probability measure as µ(s)
σ(s)

is uniformly bounded in s, by the

assumption (A1). We change the measure in the BSDE (3.10) and we arrive at

Y (t) = F +

∫ T

t

(

−
µ2(s)

2γσ2(s)
+H(s)

+

∫

R

(1

γ

(

eγ(G(s,v)+U(s,v)) − 1
)

− U(s, v)
)

Q(s, dv)η(s)
)

ds

−

∫ T

t

Z(s)dWQF

(s)−

∫ T

t

U(s, v)ÑQF

(ds, dv), 0 ≤ t ≤ T. (3.12)

We can divide the generator f in (3.12) into two parts

f(s) = f̂(s) +

∫

R

f̄(U(s, v))Q(s, dv)η(s),

f̂(s) = −
µ2(s)

γσ2(s)
+H(s) +

1

γ

∫

R

(

eγG(s,v) − 1
)

Q(s, dv)η(s),

f̄(U(s, v)) =
1

γ

(

eγ(G(s,v)+U(s,v)) − eγG(s,v)
)

− U(s, v).
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By Theorem 3.5 in Becherer (2006), we can conclude now that the BSDE (3.12) has

a unique solution under QF with F -adapted Y and F -predictable (Z, U) such that

EQF
[

∫ T

0

|Z(s)|2ds
]

<∞,

|Y (s)|+ |U(s, v)| ≤ K, QF − a.s., a.e.s ∈ [0, T ], v ∈ R. (3.13)

Moreover, by Lemma 3.4 in Becherer (2006), the process
∫ t

0
Z(s)dWQF

(s) is a

BMO(QF )-martingale.

Consider the following change of measure

dP

dQF

∣

∣

∣
Ft = e

∫ t

0
µ(s)
σ(s)

dWQF
(s)− 1

2

∫ t

0
|µ(s)
σ(s)

|2ds
, 0 ≤ t ≤ T,

which is defined as the stochastic exponential of the martingaleMFF (t) =
∫ t

0
µ(s)
σ(s)

dWQF

(s).

The martingale MFF is a BMO(QF )-martingale, as

sup
F−stopping time τ

EQF
[

∫ T

τ

∣

∣

µ(s)

σ(s)

∣

∣

2
ds
∣

∣Fτ

]

<∞,

holds due to the boundedness assumption (A1). Theorem 3.6 in Kazamaki (1994)

implies now that
∫ t

0
Z(s)dW (s) is a BMO(P)-martingale, see also Becherer (2006)

and Hu et al (2005). We can finally conclude that the BSDE (3.12) has a unique

solution under P with F -adapted Y and F -predictable (Z, U) such that

EP
[

∫ T

0

|Z(s)|2ds
]

<∞,

|Y (s)|+ |U(s, v)| ≤ K, P− a.s., a.e.s ∈ [0, T ], v ∈ R. (3.14)

Clearly, the solution (Y, Z, U) does not depend on π.

2. The supermartingale property.

By the relations (3.2), (3.14) and the boundedness assumptions (A2)-(A3), the

processes MW ,MN defined in (3.5) are stochastic exponentials of local martingales

and they have the following dynamics

dMW (t)

MW (t)
= −γ

(

π(t)σ(t)− Z(t)
)

dW (t),

dMN

MN (t−)
=

∫

R

(

eγ(G(t,v)+U(t,v)) − 1
)

Ñ(dt, dv). (3.15)

Consider the process M := (M(t), 0 ≤ t ≤ T )

M(t) =MW (t)MN (t), 0 ≤ t ≤ T,
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and by Itô’s formula we obtain its dynamics

dM(t)

M(t)
= −γ

(

π(t)σ(t)− Z(t)
)

dW (t) +

∫

R

(

eγ(G(t,v)+U(t,v)) − 1
)

Ñ(dt, dv).(3.16)

For any π ∈ A the process M is a local martingale. Moreover, as eγ(G(t,v)+U(t,v))−1 >

−1 we conclude that the martingale M is positive. Our assumptions imply also that

for any π ∈ A the process D is integrable and
∫ T

0
D(s)ds <∞, a.s. holds.

Recall now the relation (3.6)

A(t) = −e−γ(V (t)−Y (t)) = −M(t)e−γ(X(0)−Y (0))+
∫ t

0
D(s)ds, 0 ≤ t ≤ T,

which is well-defined a.s.. As M is a positive local martingale and D(s) ≥ 0, we can

derive

E[A(t ∧ τn)|Fs] = E
[

−M(t ∧ τn)e
−γ(X(0)−Y (0))+

∫ t∧τn
0 D(u)du|Fs

]

≤ E
[

−M(t ∧ τn)|Fs]e
−γ(X(0)−Y (0))+

∫ s∧τn
0

D(u)du

= −M(s ∧ τn)e
−γ(X(0)−Y (0))+

∫ s∧τn
0 D(u)du = A(s ∧ τn), 0 ≤ s ≤ t ≤ T (3.17)

where (τn)n∈N denotes a localizing sequence for the local martingale M . Notice that

Aπ(t) = −e−γ(V π(t)−Y (t)) = −e−γ(Xπ(t)+1{t=T}F−Y (t)), 0 ≤ t ≤ T,

and by uniform integrability of the family e−γXπ(τ) assumed in (3.2), together with

boundedness of F and the solution Y , we conclude that the family Aπ(τ) for F -

stopping times τ is uniformly integrable. Taking the limit n → ∞ in (3.17) we

obtain the supermartingale property of A for any π ∈ A.

3. The martingale property.

We now prove that Aπ is a martingale for π∗ defined in (3.9). First, we have

D(s) = 0 0 ≤ s ≤ T . Next, we investigate the local martingale M from (3.16).

Define τn = inf{t, |M(t)| > n}. The process M under π∗ takes the form

M(t) = 1−

∫ t

0

γM(s−)
µ(s)

γσ(s)
dW (s)

+γ

∫ t

0

∫

R

M(s−)
(

eγ(G(s,v)+U(s,v)) − 1
)

Ñ(ds, dv), 0 ≤ t ≤ T.

By Cauchy-Schwarz inequality, the property that our localized stochastic integrals

are square integrable martingales, the boundedness assumptions and the properties

15



of the solution to the BSDE we obtain

E
[

|M(t)|21{t ≤ τn}
]

≤ E[|M(t ∧ τn)|
2]

≤ K
(

1 +

∫ t

0

E
[

|M(s)|21{s ≤ τn}
]

ds
)

, 0 ≤ t ≤ T,(3.18)

with K independent of n and t. By Gronwall’s inequality we finally arrive at

E
[

|M(t)|21{t ≤ τn}] ≤ KeKT . (3.19)

Letting n→ ∞ in (3.19), together with Fatou’s lemma, gives us supt∈[0,T ] E[|M(t)|2] <

∞. We can conclude that the local martingale M is a square integrable martingale.

By the relation (3.6) this proves that Aπ is a martingale for π∗. Points 2-3 yield

optimality of the candidate strategy π∗.

4. Admissibility of the candidate strategy.

The strategy π∗ is F -predictable as Z, µ, σ are F -predictable, and it is square

integrable (3.2) as Z is square integrable and µ(t)/σ(t) is uniformly bounded in t.

The family
{

e−γXπ∗

(τ), F − stopping times
}

is uniformly integrable as

e−γX∗(τ) =M(τ)eγ(1{τ=T}F−Y (τ))−γ(X(0)−Y (0)), a.s.,

and M is uniformly integrable and F, Y are bounded. �

4 Exponential indifference pricing and hedging

We now investigate the exponential indifference pricing and hedging problem for the

stream of liabilities P . The solution is built on Theorem 3.1.

The indifference price process Y := (Y(t), 0 ≤ t ≤ T ), related to the payment

process P , is defined as a solution to the equation

VP (t, x+ Y(t)) = V0(t, x), 0 ≤ t ≤ T, (4.1)

where V(t, x) denotes the optimal value function of the dynamic utility optimization

problem (3.1) at time t given that X(t) = x. The price Y from (4.1) makes the

investor indifferent at time t between issuing or taking over the contract maturing
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at T > t, collecting the premium Y(t), covering the future claims arising from

P and not issuing or taking over the contract. We are interested in deriving the

indifference price process Y under the exponential utility function. The indifference

hedging strategy could be next deduced from the form of Y .

Theorem 4.1. Assume that (A1)-(A4) hold. The exponential indifference price

process Y := (Y(t), 0 ≤ t ≤ T ) solves the backward stochastic differential equation

Y(t) = F +

∫ T

t

(

−
µ(s)

σ(s)
Z(s) +H(s)

+

∫

R

(1

γ

(

eγ(G(s,v)+U(s,v)) − 1
)

− U(s, v)
)

Q(s, dv)η(s)
)

ds

−

∫ T

t

Z(s)dW (s)−

∫ T

t

∫

R

U(s, v)Ñ(ds, dv), 0 ≤ t ≤ T. (4.2)

The exponential indifference price can be represented as

Y(t) = EQP
[

∫ T

t

dP (t)|Ft

]

0 ≤ t ≤ T, (4.3)

where the expected value is taken under an equivalent martingale measure QP arising

from the following change of measure

dQP

dP

∣

∣FT = M(T ),

dMP (t)

MP (t−)
= −

µ(t)

σ(t)
dW (t) +

∫

R

( eγ(G(t,v)+U(t,v)) − 1

γ(G(t, v) + U(t, v))
− 1

)

Ñ(dt, dv). (4.4)

Proof:

1. The indifference price as a solution to the BSDE (4.2).

Based on Theorem 3.1 we obtain that the process Y satisfies

−e−γ(x+Y(t)−Y P (t)) = −e−γ(x−Y 0(t)), 0 ≤ t ≤ T.

We arrive at

Y(t) = Y P (t)− Y 0(t), 0 ≤ t ≤ T,

where Y P denotes the solution to the BSDE (3.3) with the generator (3.8), and Y 0

is a solution to the BSDE

Y 0(t) =

∫ T

t

( −µ2(s)

2γσ2(s)
−
µ(s)

σ(s)
Z0(s)

)

ds

−

∫ T

t

Z0(s)dW (s)−

∫ T

t

U0(s, v)Ñ(ds, dv), 0 ≤ t ≤ T, (4.5)
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which corresponds to the utility optimization problem (3.1) without the payment

process P (a pure investment problem). The BSDE (4.5) is a linear equation and

Proposition 3.2 from Becherer (2006) yields immediately that there exists a unique

solution to (4.5) with F -adapted Y 0 and F -predictable Z0 such that

E

[

∫ T

0

|Z0(s)|2ds
]

<∞,

|Y 0(t)|+ |U0(s, v)| ≤ K, a.s., a.e. s ∈ [0, T ], v ∈ R. (4.6)

Moreover, by the measurability assumption (A1) we can set U0(s, v) = 0. By

substituting Y P and Y 0 we can derive that the indifference price process Y satisfies

the BSDE (4.2), where we introduce the processes Z = ZP −Z0 and U = UP −U0.

2. The representation of the price under an equivalent martingale measure.

Notice that the processes

∫ t

0

µ(s)

σ(s)
dW (s), 0 ≤ t ≤ T,

∫ t

0

∫

R

( eγ(G(s,v)+U(s,v)) − 1

γ(G(s, v) + U(s, v))
− 1

)

Ñ(ds, dv), 0 ≤ t ≤ T,

are square integrable martingales as the integrands are a.s. bounded. We remark

that the function r(y) = ey−1
y

−1 is continuous, bounded |r(y)| ≤ e|y|+1, with r(y) >

−1 and r(0) = 0. Hence, we can define a local martingaleMP := (MP (t), 0 ≤ t ≤ T )

as the stochastic exponential

dMP (t)

MP (t−)
= −

µ(t)

σ(t)
dW (t) +

∫

R

( eγ(G(t,v)+U(t,v)) − 1

γ(G(t, v) + U(t, v))
− 1

)

Ñ(dt, dv). (4.7)

As in (3.18), we can show that the process MP defined in (4.7) is a square integrable

martingale. The process MP is positive. We can conclude that MP defines an

equivalent probability measure QP . Moreover, the measure QP is an equivalent

martingale measure as the process S is a QP -martingale.

By changing the measure in (4.2) we obtain that the indifference price process

Y satisfies the BSDE

Y(t) = F +

∫ T

t

(

H(s) +

∫

R

G(s, v)(1 + κ(s, v))Q(s, dv)η(s)
)

ds

−

∫ T

t

Z(s)dWQP

(s)−

∫ T

t

∫

R

U(s, v)ÑQP

(ds, dv), 0 ≤ t ≤ T. (4.8)
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The BSDE (4.8) has a simple structure and we can establish a probabilistic repre-

sentation of Y . Notice that by Burkholder’s inequality we have

EQP
[

sup
t∈[0,T ]

∣

∣

∫ t

0

Z(s)dWQP

(s)
∣

∣

]

≤ KEQP
[(

∫ T

0

|Z(s)|2ds
)1/2]

, (4.9)

and by Cauchy-Schwarz inequality we obtain

EQP
[(

∫ T

0

|Z(s)|2ds
)1/2]

≤ K
(

E
[

|MP (T )|2
]

E

[

∫ T

0

|Z(s)|2ds
])1/2

<∞, (4.10)

where we use square integrability of M,ZP , Z0 under P. The inequalities (4.9) and

(4.10) yield that a QP -local martingale
∫ t

0
Z(s)dWQP

(s) is a QP -martingale. In the

same way we can prove that a QP -local martingale
∫ t

0

∫

R
U(s, v)ÑQP

(ds, dv) is a

QP -martingale. Taking the expected value in (4.8) we obtain the key representation

Y(t) = EQP
[

F +

∫ T

t

(

H(s) +

∫

R

G(s, v)(1 + κ(s, v))Q(s, dv)η(s)
)

ds
∣

∣

∣
Ft

]

= EQP
[

F +

∫ T

t

(

H(s) +

∫

R

G(s, v)N(ds, dv)
)

ds
∣

∣

∣
Ft

]

,

= EQP
[

∫ T

t

dP (t)|Ft

]

0 ≤ t ≤ T, (4.11)

where we use the compensating property (A.3) for the random measure N under

QP . �

The representation (4.3) shows that the indifference price Y for the payment

process P does not induce an arbitrage. The indifference price is represented as

the expected value of the cash flows arising from the stream of liabilities P under

an equivalent martingale measure. Recall that in an incomplete market there exist

many prices and equivalent martingale measures. The exponential pricing principle

determines the equivalent martingale measure which should be used for pricing.

Notice that the martingale measure QP depends on the financial market and on the

liability P which is not traded in the market. Theorems 3.1 and 4.1 extend the

results from Becherer (2006) and Bielecki et al (2004).

Proposition 4.1. Under the assumptions of Theorem 4.1, the indifference hedging

strategy takes the form

Π(t) =
Z(t)

σ(t)
, 0 ≤ t ≤ T. (4.12)
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Following Ankirchner et al (2010) and Becherer (2006) we can call the process

Π(t) = Z(t)
σ(t)

= ZP (t)−Z0(t)
σ(t)

as the indifference hedging strategy for the stream of

liabilities P . The process Π represents the change in the optimal investment strategy

which makes the investor indifferent with respect to P . From the representation (4.8)

we could interpret Π as the amount which should be dynamically invested in S to

hedge partially the cash flows from P . Notice that we can arrive at

Y(t) = Y(0) +

∫ t

0

Π(s)
(

µ(s) + σ(s)dW (s)
)

− P (t)

+

∫ t

0

∫

R

(U(s, v) +G(s, v))ÑQP

(ds, dv), 0 ≤ t ≤ T,

which confirms the last remark. The integral with respect to the random measure

could be interpreted as additional cash inflows/outflows, over the gains from the

self-financing hedging strategy Π, which are needed to cover the past liabilities and

to bring the wealth process to the required (statutory) level of the expected value

of the future liabilities.

5 Conclusion

We have solved the exponential utility optimization and indifference pricing and

hedging problems for a general payment process. We believe that the obtained re-

sults could be useful for investors in setting prices of liabilities and hedging strategies

in their advanced risk management models which are advocated in the Basel II and

Solvency II Directives.

A Appendix

We recall the measure change technique for the Brownian motion and the random

measure. Take F -predictable processes ψ := (ψ(t),≤ t ≤ T ), κ := (κ(t, v), 0 ≤ t ≤

T, v ∈ R) such that

∫ T

0

|ψ(t)|2dt <∞,

∫ T

0

∫

R

|κ(t, v)|2Q(t, dv)η(t)dt <∞, κ(t, v) > −1, 0 ≤ t ≤ T, v ∈ R.
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Consider the process M := (M(t), 0 ≤ t ≤ T ) with the dynamics

dM(t)

M(t−)
= ψ(t)dW (t) +

∫

R

κ(t, v)Ñ(dt, dv), M(0) = 1. (A.1)

The process (A.1) is a positive local martingale, see Chapter II. 8 in Protter (2004).

Choose (ψ, κ) such that E[M(t)] = 1, for all t ∈ [0, T ], so thatM is a true martingale.

With this choice of (ψ, κ) we can define an equivalent probability measure Q ∼ P

by

dQ

dP

∣

∣

∣
Ft =M(t), 0 ≤ t ≤ T. (A.2)

Under this new measure Q the processes

WQ(t) = W (t)−

∫ t

0

ψ(s)ds, 0 ≤ t ≤ T,

ÑQ(t, A) = N(t, A)−

∫ t

0

∫

A

(1 + κ(s, v))Q(s, dv)η(s)ds, 0 ≤ t ≤ T, (A.3)

are, respectively, a Q-Brownian motion and a Q-compensated random measure. This

important statement follows from Girsanov-Meyer theorem, see Theorem III.40 in

Protter (2004).
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